Regional Antarctic Snow Accumulation Over the Past 1000 Years
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ross Sea Dipole - Temperature, Snow Accumulation and Sea Ice Variability in the Ross Sea Region, Antarctica, Over the Past 2,700 Years
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-95 Manuscript under review for journal Clim. Past Discussion started: 1 August 2017 c Author(s) 2017. CC BY 4.0 License. The Ross Sea Dipole - Temperature, Snow Accumulation and Sea Ice Variability in the Ross Sea Region, Antarctica, over the Past 2,700 Years 5 RICE Community (Nancy A.N. Bertler1,2, Howard Conway3, Dorthe Dahl-Jensen4, Daniel B. Emanuelsson1,2, Mai Winstrup4, Paul T. Vallelonga4, James E. Lee5, Ed J. Brook5, Jeffrey P. Severinghaus6, Taylor J. Fudge3, Elizabeth D. Keller2, W. Troy Baisden2, Richard C.A. Hindmarsh7, Peter D. Neff8, Thomas Blunier4, Ross Edwards9, Paul A. Mayewski10, Sepp Kipfstuhl11, Christo Buizert5, Silvia Canessa2, Ruzica Dadic1, Helle 10 A. Kjær4, Andrei Kurbatov10, Dongqi Zhang12,13, Ed D. Waddington3, Giovanni Baccolo14, Thomas Beers10, Hannah J. Brightley1,2, Lionel Carter1, David Clemens-Sewall15, Viorela G. Ciobanu4, Barbara Delmonte14, Lukas Eling1,2, Aja A. Ellis16, Shruthi Ganesh17, Nicholas R. Golledge1,2, Skylar Haines10, Michael Handley10, Robert L. Hawley15, Chad M. Hogan18, Katelyn M. Johnson1,2, Elena Korotkikh10, Daniel P. Lowry1, Darcy Mandeno1, Robert M. McKay1, James A. Menking5, Timothy R. Naish1, 15 Caroline Noerling11, Agathe Ollive19, Anaïs Orsi20, Bernadette C. Proemse18, Alexander R. Pyne1, Rebecca L. Pyne2, James Renwick1, Reed P. Scherer21, Stefanie Semper22, M. Simonsen4, Sharon B. Sneed10, Eric J., Steig3, Andrea Tuohy23, Abhijith Ulayottil Venugopal1,2, Fernando Valero-Delgado11, Janani Venkatesh17, Feitang Wang24, Shimeng -
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
Winter Storm Preparedness and Response
Winter Storm Preparedness and Response SAFETY AT HOME AND WHILE TRAVELING BE AWARE OF THE FORECAST Winter weather advisory. Formerly called a “Travelers’ Advisory,” this Winter storms are worth * serious consideration In alert may be issued by the National Weather Service for a variety of Illinois. Blizzards, heavy severe conditions. Weather advisories may be announced for snow, snow, freezing rain and blowing and drifting snow, freezing drizzle, freezing rain (when less sub-zero temperatures hit hard than ice storm conditions are expected), or a combination of weather and frequently across the events. state. Even if you think you are safe and warm at home, a * Winter storm watch. Severe winter weather conditions may affect your winter storm can become area (freezing rain, sleet or heavy snow may occur either separately or dangerous If the power is cut in combination). off. With a little planning, you can protect yourself and your * Winter storm warning. Severe winter weather conditions are imminent. family from the many hazards of winter weather, both at Freezing rain or freezing drizzle. Rain or drizzle is likely to freeze upon home and on the road. * impact, resulting in a coating of ice glaze on roads and all other exposed objects. * Sleet. Small particles of ice, usually mixed with rain. If enough sleet accumulates on the ground, it makes travel hazardous. * Blizzard warning. Sustained wind speeds of at least 35 miles per hour are accompanied by considerable failing and/or blowing snow. This is the most perilous winter storm, with visibility dangerously restricted. * Wind chill. A strong wind combined with a temperature slightly below freezing can have the same chilling effect as a temperature nearly 50 degrees lower in a calm atmosphere. -
China's Expanding Antarctic Interests
CHINA’S EXPANDING ANTARCTIC INTERESTS: IMPLICATIONS FOR NEW ZEALAND Professor Anne-Marie Brady1 | University of Canterbury | [email protected] Policy brief no. 2 | June 3, 2017 Presented at the conference: ‘Small States and the Changing Global Order: New Zealand Faces the Future’ at University of Canterbury, Christchurch, New Zealand, 3-4 June 2017 China is rapidly expanding its activities in Antarctica and some of its behaviour appears to breach the terms of the Antarctic Treaty. New Zealand must rethink its assessment of risk in Antarctica and devise a strategy to protect its interests there. Key findings • Some of China's interests and activities in Antarctica, which include undeclared military activities and mineral exploration, may be at odds with New Zealand strategic interests and they potentially breach international law. • China is rapidly expanding its presence in a triangle-shaped area it calls the "East Antarctic Sector" and has stated in policy documents that it reserves the right to make a claim in Antarctica. • New Zealand must rethink its assessment of risk in Antarctica and devise a strategy to protect its interests there. Executive summary China has rapidly expanded its activities in Antarctica and the Southern Ocean in recent years. The 2016 White Paper on Defence defines China as a "key strategic partner" for New Zealand.2 New Zealand has strong and expanding relations with China; while our top trading partners also have China as their major market. New Zealand benefits hugely from the economic opportunities associated with China's economic growth. At the same time, China's economic growth has funded a dramatic expansion in military capabilities and is challenging the longstanding strategic order in Northeast Asia and the Indo-Asia-Pacific. -
Surface Characterisation of the Dome Concordia Area (Antarctica) As a Potential Satellite Calibration Site, Using Spot 4/Vegetation Instrument
Remote Sensing of Environment 89 (2004) 83–94 www.elsevier.com/locate/rse Surface characterisation of the Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument Delphine Sixa, Michel Filya,*,Se´verine Alvainb, Patrice Henryc, Jean-Pierre Benoista a Laboratoire de Glaciologie et Ge´ophysique de l’Environnemlent, CNRS/UJF, 54 rue Molie`re, BP 96, 38 402 Saint Martin d’He`res Cedex, France b Laboratoire des Sciences du Climat et de l’Environnement, CEA/CNRS, L’Orme des Merisiers, CE Saclay, Bat. 709, 91 191 Gif-sur-Yvette, France c Centre National d’Etudes Spatiales, Division Qualite´ et Traitement de l’Imagerie Spatiale, Capteurs Grands Champs, 18 Avenue Edouard Belin, 33 401 Toulouse Cedex 4, France Received 7 July 2003; received in revised form 10 October 2003; accepted 14 October 2003 Abstract A good calibration of satellite sensors is necessary to derive reliable quantitative measurements of the surface parameters or to compare data obtained from different sensors. In this study, the snow surface of the high plateau of the East Antarctic ice sheet, particularly the Dome C area (75jS, 123jE), is used first to test the quality of this site as a ground calibration target and then to determine the inter-annual drift in the sensitivity of the VEGETATION sensor, onboard the SPOT4 satellite. Dome C area has many good calibration site characteristics: The site is very flat and extremely homogeneous (only snow), there is little wind and a very small snow accumulation rate and therefore a small temporal variability, the elevation is 3200 m and the atmosphere is very clear most of the time. -
Site Testing Dome A, Antarctica
Site testing Dome A, Antarctica J.S. Lawrencea*, M.C.B. Ashleya, M.G. Burtona, X. Cuib, J.R. Everetta, B.T. Indermuehlea, S.L. Kenyona, D. Luong-Vana, A.M. Moorec, J.W.V. Storeya, A. Tokovinind, T. Travouillonc, C. Pennypackere, L. Wange, D. Yorkf aSchool of Physics, University of New South Wales, Australia bNanjing Institute of Astronomical Optics and Technology, China cCalifornia Institute of Technology, USA dCerro-Tololo Inter-American Observatories, Chile eLawrence Berkeley Lab, University of California/Berkeley, USA fUniversity of Chicago, USA ABSTRACT Recent data have shown that Dome C, on the Antarctic plateau, is an exceptional site for astronomy, with atmospheric conditions superior to those at any existing mid-latitude site. Dome C, however, may not be the best site on the Antarctic plateau for every kind of astronomy. The highest point of the plateau is Dome A, some 800 m higher than Dome C. It should experience colder atmospheric temperatures, lower wind speeds, and a turbulent boundary layer that is confined closer to the ground. The Dome A site was first visited in January 2005 via an overland traverse, conducted by the Polar Research Institute of China. The PRIC plans to return to the site to establish a permanently manned station within the next decade. The University of New South Wales, in collaboration with a number of international institutions, is currently developing a remote automated site testing observatory for deployment to Dome A in the 2007/8 austral summer as part of the International Polar Year. This self-powered observatory will be equipped with a suite of site testing instruments measuring turbulence, optical and infrared sky background, and sub-millimetre transparency. -
2019 Weddell Sea Expedition
Initial Environmental Evaluation SA Agulhas II in sea ice. Image: Johan Viljoen 1 Submitted to the Polar Regions Department, Foreign and Commonwealth Office, as part of an application for a permit / approval under the UK Antarctic Act 1994. Submitted by: Mr. Oliver Plunket Director Maritime Archaeology Consultants Switzerland AG c/o: Maritime Archaeology Consultants Switzerland AG Baarerstrasse 8, Zug, 6300, Switzerland Final version submitted: September 2018 IEE Prepared by: Dr. Neil Gilbert Director Constantia Consulting Ltd. Christchurch New Zealand 2 Table of contents Table of contents ________________________________________________________________ 3 List of Figures ___________________________________________________________________ 6 List of Tables ___________________________________________________________________ 8 Non-Technical Summary __________________________________________________________ 9 1. Introduction _________________________________________________________________ 18 2. Environmental Impact Assessment Process ________________________________________ 20 2.1 International Requirements ________________________________________________________ 20 2.2 National Requirements ____________________________________________________________ 21 2.3 Applicable ATCM Measures and Resolutions __________________________________________ 22 2.3.1 Non-governmental activities and general operations in Antarctica _______________________________ 22 2.3.2 Scientific research in Antarctica __________________________________________________________ -
S41467-018-05625-3.Pdf
ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Detection of Glaze Icing Load and Temperature of Composite Insulators Using Fiber Bragg Grating
sensors Article Detection of Glaze Icing Load and Temperature of Composite Insulators Using Fiber Bragg Grating Jie Wei 1, Yanpeng Hao 1, Yuan Fu 1, Lin Yang 1,*, Jiulin Gan 2 and Zhongmin Yang 2 1 School of Electric Power, South China University of Technology, Guangzhou 510640, China; [email protected] (J.W.); [email protected] (Y.H.); [email protected] (Y.F.) 2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; [email protected] (J.G.); [email protected] (Z.Y.) * Correspondence: [email protected]; Tel.: +86-159-8918-4979 Received: 2 January 2019; Accepted: 13 March 2019; Published: 16 March 2019 Abstract: Conventional methods for the online monitoring of icing conditions of composite insulators suffer from difficulties. To solve this issue, a novel method is first proposed to detect glaze icing load via embedding three optical fibers with fiber Bragg gratings (FBGs) into a 10 kV composite insulator. Specifically, FBG temperature compensation sensors were packaged in ceramic tubes to solve strain and temperature cross-sensitivity. Temperature effect experiments and simulated glaze icing load experiments were performed to verify the feasibility of the proposed method. The results show that temperature sensitivities of all FBGs are identical (i.e., 10.68 pm/◦C), which achieves a simultaneous measurement of temperature and strain. In addition, the proposed method can detect glaze icing load of the composite insulator above 0.5 N (i.e., 15% of icicle bridged degree) in the laboratory. Keywords: glaze icing detection; fiber Bragg grating (FBG); composite insulator with embedded FBG; simultaneous measurement of temperature and strain 1. -
Basal Crevasses on the Larsen C Ice Shelf, Antarctica
GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L16504, doi:10.1029/2012GL052413, 2012 Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture Daniel McGrath,1 Konrad Steffen,1 Harihar Rajaram,2 Ted Scambos,3 Waleed Abdalati,1,4 and Eric Rignot5,6 Received 1 June 2012; revised 20 July 2012; accepted 23 July 2012; published 29 August 2012. [1] A key mechanism for the rapid collapse of both the Lar- thickness (due to the density difference between water and sen A and B Ice Shelves was meltwater-driven crevasse ice), fracturing the ice shelf into numerous elongate icebergs propagation. Basal crevasses, large-scale structural features [van der Veen, 1998, 2007; Scambos et al., 2003, 2009; within ice shelves, may have contributed to this mechanism in Weertman, 1973]. The narrow along-flow width and elon- three important ways: i) the shelf surface deforms due to gated across-flow length of these icebergs distinguishes them modified buoyancy and gravitational forces above the basal from tabular icebergs, and likely facilitates a positive feed- crevasse, creating >10 m deep compressional surface depres- back during the disintegration process, as elongate icebergs sions where meltwater can collect, ii) bending stresses from overturn and initiate further ice shelf calving [MacAyeal the modified shape drive surface crevassing, with crevasses et al., 2003; Guttenberg et al., 2011; Burton et al., 2012]. reaching 40 m in width, on the flanks of the basal-crevasse- [3] Dramatic atmospheric warming over the past five dec- induced trough and iii) the ice thickness is substantially ades has increased surface meltwater production along the reduced, thereby minimizing the propagation distance before a Antarctic Peninsula (AP) [Vaughan et al.,2003;van den full-thickness rift is created. -
Summary and Highlights of the 10Th International Symposium on Antarctic Earth Sciences
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Related Publications from ANDRILL Affiliates Antarctic Drilling Program 2007 Summary and Highlights of the 10th International Symposium on Antarctic Earth Sciences T. J. Wilson Ohio State University, [email protected] R. E. Bell Columbia University P. Fitzgerald Syracuse University S. B. Mukasa University of Michigan - Ann Arbor, [email protected] R. D. Powell Northern Illinois University, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/andrillaffiliates Part of the Environmental Indicators and Impact Assessment Commons Wilson, T. J.; Bell, R. E.; Fitzgerald, P.; Mukasa, S. B.; Powell, R. D.; and Finn, C., "Summary and Highlights of the 10th International Symposium on Antarctic Earth Sciences" (2007). Related Publications from ANDRILL Affiliates. 22. https://digitalcommons.unl.edu/andrillaffiliates/22 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Related Publications from ANDRILL Affiliates by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors T. J. Wilson, R. E. Bell, P. Fitzgerald, S. B. Mukasa, R. D. Powell, and C. Finn This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ andrillaffiliates/22 Cooper, A. K., P. J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, and the 10th ISAES editorial team, eds. (2008). Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: The National Academies Press.