Chapter I PANGEA I12 the Karroo System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Groundwater Recharge Estimation in Table Mountain Group Aquifer Systems with a Case Study of Kammanassie Area
GROUNDWATER RECHARGE ESTIMATION IN TABLE MOUNTAIN GROUP AQUIFER SYSTEMS WITH A CASE STUDY OF KAMMANASSIE AREA by Yong Wu Submitted in the fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Earth Sciences Faculty of Natural Sciences University of the Western Cape Cape Town Supervisor: Prof. Yongxin Xu Co-supervisor: Dr. Rian Titus August 2005 DECLARATION I declare that GROUNDWATER RECHARGE ESTIMATION IN TABLE MOUNTAIN GROUP AQUIFER SYSTE MS WITH A CASE STUDY OF KAMMANASSIE AREA is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledge by complete references. Full name: Yong Wu Date: August 2005 Signed……………. Abstract Groundwater Recharge Estimation in Table Mountain Group Aquifer Systems with a case study of Kammanassie Area Y. Wu PhD Thesis Department of Earth Sciences Key words: Hydrogeology, hydrogeochemistry, topography, Table Mountain Group, Kammanassie area, groundwater recharge processes, recharge estimation, mixing model, chloride mass balance, water balance, cumulative rainfall departure The Table Mountain Group (TMG) sandstone is a regional fractured rock aquifer system with the potential to be come the major source of future bulk water supply to meet both agricultural and urban requirements in the Western and Eastern Cape Provinces, South Africa. The TMG aquifer including Peninsula and Nardouw formations comprises approximately 4000m thick sequence of quartz arenite with outcrop area of 37,000 km 2. Groundwater in the TMG aquifer is characterized by its low TDS and excellent quality. Based on the elements of the TMG hydrodynamic system including boundary conditions of groundwater flow, geology, geomorphology and hydrology, nineteen hydrogeological units were identified, covering the area of 248,000km2. -
Wec01's SSSS Fossils Test 2019
wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10. -
New Siberian Islands Archipelago)
Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins. -
Plate Tectonic Regulation of Global Marine Animal Diversity
Plate tectonic regulation of global marine animal diversity Andrew Zaffosa,1, Seth Finneganb, and Shanan E. Petersa aDepartment of Geoscience, University of Wisconsin–Madison, Madison, WI 53706; and bDepartment of Integrative Biology, University of California, Berkeley, CA 94720 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved April 13, 2017 (received for review February 13, 2017) Valentine and Moores [Valentine JW, Moores EM (1970) Nature which may be complicated by spatial and temporal inequities in 228:657–659] hypothesized that plate tectonics regulates global the quantity or quality of samples (11–18). Nevertheless, many biodiversity by changing the geographic arrangement of conti- major features in the fossil record of biodiversity are consis- nental crust, but the data required to fully test the hypothesis tently reproducible, although not all have universally accepted were not available. Here, we use a global database of marine explanations. In particular, the reasons for a long Paleozoic animal fossil occurrences and a paleogeographic reconstruction plateau in marine richness and a steady rise in biodiversity dur- model to test the hypothesis that temporal patterns of continen- ing the Late Mesozoic–Cenozoic remain contentious (11, 12, tal fragmentation have impacted global Phanerozoic biodiversity. 14, 19–22). We find a positive correlation between global marine inverte- Here, we explicitly test the plate tectonic regulation hypothesis brate genus richness and an independently derived quantitative articulated by Valentine and Moores (1) by measuring the extent index describing the fragmentation of continental crust during to which the fragmentation of continental crust covaries with supercontinental coalescence–breakup cycles. The observed posi- global genus-level richness among skeletonized marine inverte- tive correlation between global biodiversity and continental frag- brates. -
South African Great Escarpment
Sentinel Vision EVT-227 South African Great Escarpment 19 April 2018 Sentinel-1 CSAR IW acquired on 30 August 2017 from 17:17:27 to 17:18:42 UTC Sentinel-2 MSI acquired on 03 September 2017 at 08:19:59 UTC ... Se ntinel-1 CSAR IW acquired on 08 September 2017 from 16:53:05 to 16:53:30 UTC Sentinel-3 SLSTR RBT acquired from 04 January 2018 to 07:59:47 UTC Author(s): Sentinel Vision team, VisioTerra, France - [email protected] 2D Layerstack Keyword(s): Land, mountains, geology, faults, subduction, plateau, orogeny, South Africa Fig. 1 - S2 (03.09.2017) - 11,8,2 colour composite - Zoom on Cape Town region evidencing Table Mountain. 3D view 2D view Table Mountain, Sandstone layers form the ramparts overlying a basement of Precambrian slates and granite - source: Cape Town University Department of Geological Sciences of Cape Town University describes the Geology of the Cape Peninsula: "The late-Precambrian age Malmesbury Group is the oldest rock formation in the area, consisting of alternating layers of dark grey fine-grained greywacke sandstone and slate, seen along the rocky Sea Point and Bloubergstrand shorelines. These sediments were originally deposited on an ancient continental slope by submarine slumping and turbidity currents. The sequence was subsequently metamorphosed by heat and pressure and folded tightly in a NW direction so that the rock layers are now almost vertical. The Peninsula Granite is a huge batholith that was intruded into the Malmesbury Group about 630 million years ago as molten rock (magma) and crystallized deep in the earth, but has since then been exposed by prolonged erosion. -
Teixeira Et Al Paleoproterozoic Record.Pdf
2019 ASGBC 2019 Annual Symposium on Geology of Brazil and China The Paleoproterozoic record of the São Francisco Craton Paleocontinent and Late Paleoproterozoic to Neoproterozoic covers Field Workshop Brazil, 13-25 August, 2019 W. Teixeira (IGc-USP), F. Chemale Jr. (PPGEO- UNISINOS), E. P. Oliveira (IG-UNICAMP) (Organizers) São Paulo, August - 2019 2019 ASGBC 2019 Annual Symposium on Geology of Brazil and China Institutional support: 2019 ASGBC 2019 Annual Symposium on Geology of Brazil and China Field trip 1 – The Mineiro belt and the Quadrilátero Ferrífero, Southern São Francisco Craton by W. Teixeira, E. Oliveira, F. Alkmim, L. Seixas Field workshop 1 Brazil, 13-18 August, 2019 2019 ASGBC 2019 Annual Symposium on Geology of Brazil and China 1. Introduction The field workshop on the Paleoproterozoic record of the São Francisco craton (SFC) has been designed to provide a view on the aspects of the Paleoproterozoic geology with emphasis on the Mineiro belt and the Minas Supergroup in Minas Gerais state, and thus afford the opportunity to discuss outcrop evidence for the issues such as: i) Significance of the Paleoproterozoic orogenic domains of the SFC; ii) Supercontinent assembly in the context of the Columbia Supercontinent; iii) Paleoproterozoic orogenic architecture as a transition between Archean tectonic styles; iv) Differential response of the Paleoproterozoic lithosphere to extensional tectonism. The first part of field trip traverses the Paleoproterozoic orogenic domain of the southern portion of the SFC in Minas Gerais state, emphasizing its most representative rock assemblages, geochronological and geochemical constraints and tectonic features of the Mineiro belt. This part of the field workshop ends in the mining district of the Quadrilátero Ferrífero where it traverses the Minas Supergroup, which corresponds to the foreland domain of the Paleoproterozoic Mineiro belt. -
The Largest Tropical Peat Mires in Earth History
Geological Society of America Special Paper 370 2003 Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in Earth history Stephen F. Greb William M. Andrews Cortland F. Eble Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506, USA William DiMichele Smithsonian Institution, National Museum of Natural History, Washington, D.C., USA C. Blaine Cecil U.S. Geological Survey, Reston, Virginia, USA James C. Hower Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA ABSTRACT The Colchester, Springfield, and Herrin Coals of the Eastern Interior Basin are some of the most extensive coal beds in North America, if not the world. The Colchester covers an area of more than 100,000 km^, the Springfield covers 73,500-81,000 km^, and the Herrin spans 73,900 km^. Each has correlatives in the Western Interior Basin, such that their entire regional extent varies from 116,000 km^to 200,000 km^. Correlatives in the Appalachian Basin may indicate an even more widespread area of Desmoinesian peatland development, although possibly sUghtly younger in age. The Colchester Coal is thin, but the Springfield and Herrin Coals reach thicknesses in excess of 3 m. High ash yields, dominance of vitrinite macerals, and abundant lycopsids suggest that these Desmoinesian coals were deposited in topogenous (groundwater fed) to solige- nous (mixed-water source) mires. The only modern mire complexes that are as wide- spread are northern-latitude raised-bog mires, but Desmoinesian -
GONDWANA I11 Du Toit
GONDWANA 503 i11 du Toit < Gondwana, Samfrau > ... the really important point is not so much to disprove Wegener’s particular views as to decide from the relevant evidence whether or not continental drift is a genuine variety of earth movement. —Holmes, 1944.1 A geologist who looked for geological evidence to test Wegener’s hypothesis of continental drift was Alexander Logie du Toit (1878-1948). As a field geologist for the Geological Survey of South Africa he became familiar with the regional geology of that country. Curious to see firsthand how well, if at all, the geology either side of the Atlantic matched, he applied for and upon receiving a generous grant from the Carnegie Institution of Washington in 1923 he spent five months in South America familiarizing himself with the geology of Argentina, Paraguay and Brazil. His seminal paper, A Geological Comparison of South America with South Africa, was published in 1927. He wrote, “The concordance between the opposed shores, incidentally pointed out and discussed by others long before Wegener, has consistently been extended by each fresh geological observation until at present the amount of agreement is 5 In his book, Our Wandering Continents nothing short of marvellous.” Persuasive of a former (1937)2 is the statement: “from the proximity of the two continents are the discoverable linkages mid-Palaeozoic onwards the lands must have that “cross from coast to coast, not only directly but crept northwards for thousands of kilometers diagonally as well, and are furthermore of widely different to account for their deduced climatic ages.” In the map to illustrate this tectonic and phasal (lateral vicissitudes. -
PRISCUM the Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004
PRISCUM The Newsletter of the Paleontological Society Volume 13, Number 2, Fall 2004 Paleontological PRESIDENT’S Society Officers COLUMN: Inside... President Treasurer’s Report 2 William I. Ausich WE NEED YOU! GSA Information 2 President-Elect by William I. Ausich Reviews of PS- David Bottjer Sponsored Sessions 3 Past-President Why are you a member of The Paleontology Portal 5 Patricia H. Kelley The Paleontological Society? In PS Lecture Program 6 Secretary the not too distance past, the Books for Review 9 Roger D. K. Thomas only way to receive a copy of the Journal of Book Reviews 9 Treasurer Paleontology and Paleobiology was to pay your dues Conference Announce- and belong to the Society. I suppose one could Mark E. Patzkowsky have borrowed a copy from a friend or wander over ments 14 JP Managing Editors to the library. However, this was probably done Ann (Nancy) F. Budd with a heavy burden of guilt. Now, as we move Christopher A. Brochu into the digital age of scientific journal publishing, Jonathan Adrain one can have copies of the Journal of Paleontology and Paleobiology transmitted right to your Paleobiology Editors computer. It actually may arrive faster than the Tomasz Baumiller U.S. mail, you do not have to pay anything, and Robyn Burnham you do not even have to walk over to the library. Philip Gingerich No need for shelf space, no hassle, no dues, no Program Coordinator guilt – isn’t the Web great? The Web is great, but the Society needs dues-paying members in order Mark A. Wilson to continue to publish in paper, digitally, or both. -
Div B Fossils Answer Key
Div B Fossils Answer Key Name: . Date: . This is a 50 minute test. Each station is 2 minutes and 30 seconds. Keep in mind that questions that require Multiple answers will only be marked correct if ALL of the answers chosen/written are correct. /120 Station 1: 1) Brachiosaurus 2) Elmer S. Riggs 3) Diplodocus 4) Cañon City, Colorado 5) Patagotitan 6) Late Cretaceous Station 2: 7) Velociraptor 8) Spinosaurus 9) Plateosaurus 10) Ankylosaurus 11) Parasaurolophus 12) Dracorex Station 3: 13) Platystrophia 14) A, C, D, E 15) Composita 16) Late Devonian-Late Permian 17) Atrypa 18) All around the world Station 4: 19) .Calymene 20) Beautiful crescent, references the glabella 21) Eldredgeops (formerly Phacops) 22) 11 23) Elrathia 24) Four axial rings Station 5: 25) A - Thorax 26) B - Genal Angle 27) C - Cephalon 28) D - Eye 29) E - Pleural furrow 30) F - Librigena 31) G - Fulcrum Station 6: 32) Order Ammonoid 33) Cretaceous–Paleogene extinction even 34) True 35) Planispirals, helically, heteromorphs 36) F Station 7: 37) Class Crinoidea 38) A 39) A characteristic of a species, meaning that it has distinct male and female individual organisms. 40) Yes 41) 600 42) 40 m (130 ft) Station 8: 43) Belemnitella 44) 84.9–66.043 Ma 45) Europe and North America 46) Internal 47) North America 48) True Station 9: 49) Bothriolepis 50) "pitted scale" or "trench scale", either or both accepted 51) Bothriolepis, keyhole, mouth 52) Three 53) a superficial -
Annual Meeting 2002
Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S. -
Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification Ve Ent
University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 2020 Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification vE ent Adriane R. Lam University of Massachusetts Sarah L. Sheffield University of South Florida, [email protected] Nicholas J. Matzke University of Auckland Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Lam, Adriane R.; Sheffield, Sarah L.; and Matzke, Nicholas J., "Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification Event" (2020). School of Geosciences Faculty and Staff Publications. 2291. https://scholarcommons.usf.edu/geo_facpub/2291 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Paleobiology, 2020, pp. 1–23 DOI: 10.1017/pab.2020.24 Article Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event Adriane R. Lam†, Sarah L. Sheffield† , and Nicholas J. Matzke Abstract.—Echinoderms make up a substantial component of Ordovician marine invertebrates, yet their speciation and dispersal history as inferred within a rigorous phylogenetic and statistical framework is lacking. We use biogeographic stochastic mapping (BSM; implemented in the R package BioGeoBEARS) to infer ancestral area relationships and the number and type of dispersal events through the Ordovician for diploporan blastozoans and related species.