RESEARCH ARTICLE Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein Rama Reddy Goluguri1, Sreemantee Sen1, Jayant Udgaonkar1,2* 1National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; 2Indian Institute of Science Education and Research, Pune, India Abstract Protein aggregation appears to originate from partially unfolded conformations that are sampled through stochastic fluctuations of the native protein. It has been a challenge to characterize these fluctuations, under native like conditions. Here, the conformational dynamics of the full-length (23-231) mouse prion protein were studied under native conditions, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS). The slowest fluctuations could be associated with the folding of the unfolded state to an intermediate state, by the use of microsecond mixing experiments. The two faster fluctuations observed by PET- FCS, could be attributed to fluctuations within the native state ensemble. The addition of salt, which is known to initiate the aggregation of the protein, resulted in an enhancement in the time scale of fluctuations in the core of the protein. The results indicate the importance of native state dynamics in initiating the aggregation of proteins. DOI: https://doi.org/10.7554/eLife.44766.001 Introduction Structural fluctuations in proteins are not only critical for function (Henzler-Wildman and Kern, 2007; Yang et al., 2014) and folding (Wani and Udgaonkar, 2009; Malhotra and Udgaonkar, *For correspondence: 2016; Frauenfelder et al., 1991; Bai et al., 1995), but also have a role to play in protein misfolding
[email protected] and aggregation (Scheibel, 2001; Elam et al., 2003; Chiti and Dobson, 2009; Singh and Udgaon- Competing interests: The kar, 2015a).