Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download Tropical Natural History 21(1): 184–199, April 2021 ©2021 by Chulalongkorn University Chronological Changes in the Somatic Development of Hoplobatrachus rugulosus (Wiegmann, 1834) (Anura: Dicroglossidae) THRISSAWAN TRAIJITT1, 2, NOPPADON KITANA2,3, WICHASE KHONSUE2, 3 AND JIRARACH KITANA2, 3* 1Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND 3BioSentinel Research Group (Special Task Force for Activating Research), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND *Corresponding author. Jirarach Kitana ([email protected]) Received: 10 November 2020; Accepted: 11 February 2021 ABSTRACT.– The rice field frog Hoplobatrachus rugulosus is widely distributed throughout the wetlands of Thailand. It is economically important and a potential experimental subject in many fields of research. To use its development as a biomarker, general information about normal morphological changes during metamorphosis is necessary. In this study, embryos and larvae of H. rugulosus were examined at every stage from fertilization until complete metamorphosis. Their developmental stages were identified using Gosner’s (1960) staging system and the result showed that all morphological characteristics of H. rugulosus were corresponded to those in Gosner’s system. This is the first study that report the period of embryonic and larval development at each stage of H. rugulosus. The embryonic phase occurred within 13-21 hours after fertilization, the hatchling phase continued within 36-44 hours after fertilization, the tadpole phase followed within 20-26 days post hatch, and the metamorph phase finished within 25-33 days post hatch. The rate of somatic development of H. rugulosus was relatively rapid comparing with those of other anurans. These results could be used as crucial developmental data for further research into this species. KEY WORDS: developmental period, embryology, Gosner stage, Hoplobatrachus rugulosus, tadpole Limbaugh and Volpe (1957) reported the INTRODUCTION complete staging table of Incilius valliceps, as Bufo valliceps, which was composed of More than eighty years ago, staging 46 stages. In 1960, Gosner tried to simplify tables of embryo and larva development in the staging table from the previous work of different species of anuran were published Shumway (1940), Taylor and Kollros (1946) by several different researchers. In 1940, a and Limbaugh and Volpe (1957) and study of the twenty-five prefeeding stages of adopted this staging table to use for other Lithobates pipiens, as Rana pipiens, was species based on studies of larvae of toad published by Shumway, just after the species Anaxyrus americanus, as Bufo publication of a study on temperature terrestris americanus and Anaxyrus influenced egg development in Lithobates woodhousii, as Bufo woodhousei fowle sylvaticus, as Rana sylvatica (Moore, 1939). (Gosner and Black, 1958). Gosner’s staging Following these, a study of the twenty-five system was later adjusted and used as a postfeeding stages of Lithobates pipiens was supplement to other staging systems in published by Taylor and Kollros (1946). identification of embryonic stages in a However, the number of postfeeding stages number of anuran species. Currently, Gosner’s was not the same as Shumway’s table. TRAIJITT ET AL. — SOMATIC DEVELOPMENT OF HOPLOBATRACHUS RUGULOSUS 185 staging table is used as a standard system are suitable experimental subjects for many and is strongly recommended by several studies because they can be cultured and researchers (Altig and McDiarmid, 1999; manipulated in the laboratory, they have a Shimizu and Ota, 2003; Del Pino et al., short metamorphosis period, and their body 2004; Sayim and Kaya, 2008; Saha and size and organs are large enough to observe Gupta, 2011; Pfalzgraff et al., 2015). morphological characteristics with the In Thailand, more than 175 species of naked eye and under stereomicroscope. amphibian fauna can be found (BEDO, However, information about normal 2016). There are several reports of their embryonic and larval development in this morphological and ecological data, but species has never been documented. studies examining their life history and Therefore, in this study morphological embryonic development are scarce. The rice characteristics during embryonic and larval field frog Hoplobatrachus rugulosus is an development were studied in H. rugulosus anuran amphibian in the family Dicro- using photomicrography, and described glossidae, the only member of the genus according to Gosner’s staging system Hoplobatrachus found in Thailand (Chan- (Gosner, 1960). The development of H. ard, 2003; Pansook et al., 2012). This native rugulosus is presented as a table of normal frog is widely distributed throughout the wet chronological development from fertilization lands of Thailand and also in central, to complete metamorphosis. southern, and south-western China to Myanmar, Lao People’s Democratic MATERIALS AND METHODS Republic, Viet Nam, Cambodia, and peninsular Malaysia (Diesmos et al., 2004; Animal procurement was carried out at Frost, 2021). Recently, it was reported that the Amphibian and Reptile Research Unit, the frog may be a cryptic species by Faculty of Science, Chulalongkorn University. molecular technique (Yu et al., 2015). The In this study, H. rugulosus (bred type) were taxonomy as well as life history of this originally obtained from northern Thailand, species still needs to be studied in different which represented a single clade of H. populations throughout their distribution rugulosus populations (Pansook et al. 2012). range. Hoplobatrachus rugulosus has been Six pairs of adult male and female H. used as an experimental animal for basic rugulosus were used as breeders for biological studies in Thailand, such as those stimulated fertilization. Somatic development looking into taxonomic diversity and during metamorphosis was studied during geographic variation (Khonsue and two breeding periods between April and Thirakhupt, 2001; Schmalz and Zug, 2002; August of 2015 and 2018. Fertilization was Bain and Truong, 2004; Hasan et al., 2012), stimulated by injecting GnRH analogue physiology (Ratanasaenga et al., 2008), (Suprefact, Frankfurt am Main, Germany) to behavior (Li et al., 2011) and pathology induce spermination, ovulation and mating, (Satetasit et al., 2009; Sailasuta et al., 2011). as used in a previous protocol (Pariyanonth Furthermore, it also been used in studies of et al., 1985). A subcutaneous injection of 10 environmental endocrine disruption effects µg/1 kg body weight GnRH analogue was on metamorphosis and gonadal development done in the abdominal area using a (Ruamthum et al., 2011; Trachantong et al., 27Gx1/2” needle. Each brood of tadpoles 2013). Hoplobatrachus rugulosus tadpoles 186 TROPICAL NATURAL HISTORY 21(1), APRIL 2021 was raised in a 100L plastic container under Museum of Natural History (voucher natural light and temperature conditions number CUMZ-A-7791 – CUMZ-A-8236). (water temperature 27.5–28.1°C). A land area was provided when the tadpoles RESULTS reached the hind limb development stages (stage 38-39) by setting the plastic container Clutch sizes from the six pairs of at an angle of 30 degrees to the ground. The breeders ranged from 600–1,800 eggs. The water volume was 35 L for tadpoles and the eggs were laid in water in large clumps. water volume was reduced to 10 L for There were two layers of jelly envelope metamorphs. The water was changed every surrounding each egg. The average diameter day to remove waste and maintain oxygen of a spherical egg without envelope was levels. Tadpoles and froglets were fed with 2.012-2.166 millimeters (n=8). The animal commercial fish pellets once a day. pole had a dark-brownish pigment, and the Morphological changes from fertilization vegetal pole was white. According to the until complete metamorphosis were Gosner staging system, the developmental carefully observed under stereomicroscope, period of frogs is divided into 4 phases classified according to the characteristics of including embryo (stages 1–20), hatchling each stage of tadpole according to Gosner (stages 21–24), tadpole (stages 25–41), and (1960), and photographed with an Olympus metamorph (stages 42–46). The age ranges DP72 camera on an Olympus SZX16 of each stage, as well as their morphological stereomicroscope with Image Stacking Cell- characteristics were determined as follows. D Auto-montage software. Tadpoles at Embryo (stages 1–20, Table 1, Fig. 1) Gosner stages 18–46 were euthanized by The embryo phase began with fertili- immersion in 0.25% ethyl 3-aminobenzoate zation (stage 1), then the fertilized egg methanesulfonate (MS-222) aqueous solution entered mitotic cell division which marked before observation. Eight to sixteen tadpoles the beginning of stage 2. The embryonic were observed at each stage to collect the cells underwent multiple rounds of cleavage data of developing time. The average total and became blastula without increasing their length (TL) of embryos and tadpoles at cell size (stages 3–9). Gastrulation occurred stages 1–25 was measured using Image at stages 10–12. Neurulation was observed Stacking Cell-D Auto-montage software and at stages 13–16. Tail bud development the TL of tadpole and froglet at stages 26– began at stage 17. Muscular response first 46 was measured using a digital Vernier occurred at stage 18. External gills began
Recommended publications
  • 8431-A-2017.Pdf
    Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 8, Issue, 8, pp. 19482-19486, August, 2017 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article BATRACHOFAUNA DIVERSITY OF DHALTANGARH FOREST OF ODISHA, INDIA *Dwibedy, SK Department of Zoology, Khallikote University, Berhampur, Odisha, India DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0702 ARTICLE INFO ABSTRACT Article History: Small forests are often ignored. Their faunal resources remain hidden due to negligence. But they may be rich in animal diversity. Considering this, I have started an initial study on the batrachofauna Received 15th May, 2017 th diversity of Dhaltangarh forest. Dhaltangarh is a small reserve protected forest of Jagatsingpur Received in revised form 25 district of Odisha in India of geographical area of 279.03 acre. The duration of the study was 12 June, 2017 months. Studies were conducted by systematic observation, hand picking method, pitfall traps & Accepted 23rd July, 2017 th photographic capture. The materials used to create this research paper were a camera, key to Indian Published online 28 August, 2017 amphibians, binocular, & a frog catching net. The study yielded 10 amphibian species belonging to 4 families and 7 genera. It was concluded that this small forest is rich in amphibians belonging to Key Words: Dicroglossidae family. A new amphibian species named Srilankan painted frog was identified, Dhaltangarh, Odisha, Batrachofauna, which was previously unknown to this region. Amphibia, Anura, Dicroglossidae Copyright © Dwibedy, SK, 2017, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • The Larval Hyobranchial Skeleton of Five Anuran Species and Its Ecological Correlates (Amphibia: Anura)
    ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 16 (3/4): 133-140 133 Wien, 30. Jänner 2004 The larval hyobranchial skeleton of five anuran species and its ecological correlates (Amphibia: Anura) Das larvale Hyobranchialskelett von fünf Anurenarten und seine ökologischen Entsprechungen (Amphibia: Anura) MUHAMMAD SHARIF KHAN KURZFASSUNG Die Grobmorphologie der hyobranchialen Skelettelemente der Larven von Bufo stomaticus, Euphlyctis cyanophlyctis, Limnonectes limnocharis / L. syhadrensis, Hoplobatrachus tigerinus und Microhyla ornata wird beschrieben. Die Arten unterscheiden sich in der Gestalt ihrer buccopharyngealen Elemente, was die Eigenarten ihrer Ernährung widerspiegelt. ABSTRACT Gross morphology of the hyobranchial skeletal elements of the tadpoles of Bufo stomaticus, Euphlyctis cyanophlyctis, Limnonectes limnocharis I L. syhadrensis, Hoplobatrachus tigerinus and Microhyla ornata, is described. The tadpole species differ in details of the morphology of their bucco-pharyngeal elements, which reflects dietary preferences of each species. KEY WORDS Amphibia: Anura Bufo stomaticus, Euphlyctis cyanophlyctis, Limnonectes limnocharis, Limnonectes syhad- rensis, Hoplobatrachus tigerinus, Microhyla ornata, hyobranchial skeleton, tadpoles, larvae, morphology, feeding ecology, riparian Punjab, Pakistan INTRODUCTION Early Paleozoic vertebrates fed on 1987; SANDERSON & WASSERSUG 1989; microscopical organic particulate filtrate KHAN 1991, 1999; KHAN & MUFTI 1994a). retrieved
    [Show full text]
  • Lotus Wind Power Project
    Initial Environmental Examination – Appendix H Project Number: 54211-001 March 2021 Document Stage: Draft Viet Nam: Lotus Wind Power Project Prepared by ERM Vietnam for Lien Lap Wind Power Joint Stock Company, Phong Huy Wind Power Joint Stock Company, and Phong Nguyen Wind Power Joint Stock Company as a requirement of the Asian Development Bank. The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity survey Wet season report Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam 7 July 2020 Prepared by ERM’s Subcontractor for ERM Vietnam Document details Document title Biodiversity survey Wet season report Document subtitle Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam Date 7 July 2020 Version 1.0 Author ERM’s Subcontractor Client Name ERM Vietnam Document history Version Revision Author Reviewed by ERM approval to issue Comments Name Date Draft 1.0 Name Name Name 00.00.0000 Text Version: 1.0 Client: ERM Vietnam 7 July 2020 BIODIVERSITY SURVEY WET SEASON REPORT CONTENTS Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam CONTENTS 1.
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 27 (April 2017), 217–229 Herpetological Journal FULL PAPER Published by the British Trophic segregation of anuran larvae in two temporary Herpetological Society tropical ponds in southern Vietnam Anna B. Vassilieva1,2,3, Artem Y. Sinev3 & Alexei V. Tiunov1,2 1A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia 2Joint Russian-Vietnamese Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam 3Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119911, Russia Trophic differentiation of tadpoles of four anuran species (Hoplobatrachus rugulosus, Microhyla fissipes, M. heymonsi, Polypedates megacephalus) with different oral morphologies was studied in temporary ponds in a monsoon tropical forest in southern Vietnam. All tadpole species were found to be omnivorous, including filter-feeding microhylids. Both gut contents analysis and stable isotope analysis provided enough evidence of resource partitioning among coexisting species. Gut contents analysis supported the expected partitioning of food resources by tadpoles with different oral morphologies and showed differences in the food spectra of filter-feeding and grazing species. Stable isotope analysis revealed more complex trophic niche segregation among grazers, as well as amongst filter-feeders. Tadpole species differed mainly in δ13C values, indicating a dependency on carbon sources traceable to either of aquatic or terrestrial origins. Furthermore, tadpoles with generalised grazing oral morphology (P. megacephalus) can start feeding as suspension feeders and then shift to the rasping mode. Controlled diet experiment with P. megacephalus larvae showed a diet-tissue isotopic fractionation of approximately 1.9‰ and 1.2‰ for Δ13C and Δ15N, respectively.
    [Show full text]
  • How Is the COVID-19 Outbreak Affecting Wildlife Around the World?
    Open Journal of Ecology, 2020, 10, 497-517 https://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 How Is the COVID-19 Outbreak Affecting Wildlife around the World? Abdel Fattah N. Abd Rabou Department of Biology, Faculty of Science, Islamic University of Gaza, Gaza Strip, Palestine How to cite this paper: Abd Rabou, A.N. Abstract (2020) How Is the COVID-19 Outbreak Affecting Wildlife around the World? Open The COVID-19 is the infectious disease caused by the most recently discov- Journal of Ecology, 10, 497-517. ered coronavirus at an animal market in Wuhan, China. Many wildlife spe- https://doi.org/10.4236/oje.2020.108032 cies have been suggested as possible intermediate sources for the transmission Received: June 2, 2020 of COVID-19 virus from bats to humans. The quick transmission of COVID-19 Accepted: August 1, 2020 outbreak has imposed quarantine measures across the world, and as a result, Published: August 4, 2020 most of the world’s towns and cities fell silent under lockdowns. The current Copyright © 2020 by author(s) and study comes to investigate the ways by which the COVID-19 outbreak affects Scientific Research Publishing Inc. wildlife globally. Hundreds of internet sites and scientific reports have been This work is licensed under the Creative reviewed to satisfy the needs of the study. Stories of seeing wild animals Commons Attribution International roaming the quiet, deserted streets and cities during the COVID-19 outbreak License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ have been posted in the media and social media.
    [Show full text]
  • A Method to Distinguish Intensively Farmed from Wild Frogs
    Received: 23 March 2016 | Revised: 30 January 2017 | Accepted: 6 February 2017 DOI: 10.1002/ece3.2878 ORIGINAL RESEARCH Stable isotope analyses—A method to distinguish intensively farmed from wild frogs Carolin Dittrich | Ulrich Struck | Mark-Oliver Rödel Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Abstract Germany Consumption of frog legs is increasing worldwide, with potentially dramatic effects for Correspondence ecosystems. More and more functioning frog farms are reported to exist. However, Mark-Oliver Rödel, Museum für Naturkunde, due to the lack of reliable methods to distinguish farmed from wild- caught individuals, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany. the origin of frogs in the international trade is often uncertain. Here, we present a new Email: [email protected] methodological approach to this problem. We investigated the isotopic composition of Funding information legally traded frog legs from suppliers in Vietnam and Indonesia. Muscle and bone tis- 15 13 18 Museum für Naturkunde Berlin; MfN sue samples were examined for δ N, δ C, and δ O stable isotope compositions, to Innovation fund; Leibniz Association′s Open Access Publishing Fund elucidate the conditions under which the frogs grew up. We used DNA barcoding (16S rRNA) to verify species identities. We identified three traded species (Hoplobatrachus rugulosus, Fejervarya cancrivora and Limnonectes macrodon); species identities were 15 18 partly deviating from package labeling. Isotopic values of δ N and δ O showed sig- 15 nificant differences between species and country of origin. Based on low δ N compo- sition and generally little variation in stable isotope values, our results imply that frogs from Vietnam were indeed farmed.
    [Show full text]
  • The Diet of the African Tiger Frog, Hoplobatrachus Occipitalis, in Northern Benin
    SALAMANDRA 47(3) 125–132 20 AugustDiet 2011 of HoplobatrachusISSN 0036–3375 occipitalis The diet of the African Tiger Frog, Hoplobatrachus occipitalis, in northern Benin Mareike Hirschfeld & Mark-Oliver Rödel Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany Corresponding author: Mark-Oliver Rödel, e-mail: [email protected] Manuscript received: 27 May 2011 Abstract. The worldwide decline of amphibian populations calls for studies concerning their ecological role within eco- systems and only knowledge about amphibian species’ diets may facilitate the identification of their respective position in trophic cascades. Frog consumption by humans has recently increased to a considerable extent in some parts of West Af- rica. We analyse herein the diet of the most commonly consumed frog species, Hoplobatrachus occipitalis (Dicroglossidae), in Malanville, northern Benin. In order to determine its prey spectrum we investigated stomachs of frogs obtained from frog hunters, and stomach-flushed frogs caught by ourselves. Overall, we investigated the gut contents of 291 individuals (83 flushed, 208 dissected), 21% of which had empty stomachs. We identified Coleoptera, Lepidoptera and Formicidae as the most important prey categories in flushed frogs and Pisces, Coleoptera and Araneae in collected frog stomachs. Accord- ing to these data, H. occipitalis is an opportunistic forager, able to predate on terrestrial as well as on aquatic taxa. The prey spectrum revealed by the two different sampling methods differed only slightly. In contrast, the frequency of particular prey categories (e.g., fish) differed strongly. These differences were most probably method-based, rather than reflecting different prey availability among capture sites.
    [Show full text]
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    1 Genetic divergence and evolutionary relationships in six species of genera 2 Hoplobatrachus and Euphlyctis (Amphibia: Anura) from Bangladesh and other 3 Asian countries revealed by mitochondrial gene sequences 4 5 Mohammad Shafiqul Alam a, Takeshi Igawa a, Md. Mukhlesur Rahman Khan b, 6 Mohammed Mafizul Islam a, Mitsuru Kuramoto c, Masafumi Matsui d, Atsushi 7 Kurabayashi a, Masayuki Sumida a* 8 9 a Institute for Amphibian Biology, Graduate School of Science, Hiroshima 10 University, Higashihiroshima 739-8526, Japan 11 b Bangladesh Agricultural University, Mymensingh-2202, Bangladesh 12 c 3-6-15 Hikarigaoka, Munakata, Fukuoka 811-3403, Japan 13 d Graduate School of Human and Environmental Studies, Kyoto University, 14 Sakyo-ku, Kyoto 606-8501, Japan 15 16 *corresponding author 17 Phone: +81-82-424-7482 18 Fax: +81-82-424-0739 19 Email: [email protected] 20 21 1 1 Abstract 2 To elucidate the species composition, genetic divergence, evolutionary 3 relationships and divergence time of Hoplobatrachus and Euphlyctis frogs (subfamily 4 Dicroglossinae, family Ranidae) in Bangladesh and other Asian countries, we 5 analyzed the mitochondrial Cyt b, 12S and 16S rRNA genes of 252 specimens. Our 6 phylogenetic analyses showed 13 major clades corresponding to several cryptic 7 species as well as to nominal species in the two genera. The results suggested 8 monophyly of Asian Hoplobatrachus species, but the position of African H. 9 occipitalis was not clarified. Nucleotide divergence and phylogenetic data suggested 10 the presence of allopatric cryptic species allied to E. hexadactylus in Sundarban, 11 Bangladesh and several parapatric cryptic species in the Western Ghats, India.
    [Show full text]
  • Frog Eat Frog: Exploring Variables Influencing Anurophagy
    Frog eat frog: exploring variables influencing anurophagy G. John Measey1, Giovanni Vimercati1, F. Andre´ de Villiers1, Mohlamatsane M. Mokhatla1, Sarah J. Davies1, Shelley Edwards1 and Res Altwegg2,3 1 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa 2 Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa 3 African Climate and Development Initiative, University of Cape Town, South Africa ABSTRACT Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data.
    [Show full text]
  • Non-Native Populations and Global Invasion Potential of the Indian Bullfrog Hoplobatrachus Tigerinus: a Synthesis for Risk-Analysis
    Biol Invasions (2021) 23:69–81 https://doi.org/10.1007/s10530-020-02356-9 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Non-native populations and global invasion potential of the Indian bullfrog Hoplobatrachus tigerinus: a synthesis for risk-analysis Nitya Prakash Mohanty . Angelica Crottini . Raquel A. Garcia . John Measey Received: 1 October 2019 / Accepted: 26 August 2020 / Published online: 9 September 2020 Ó Springer Nature Switzerland AG 2020 Abstract Invasive amphibians have considerable tigerinus as an invasive species to aid in risk analyses ecological and socio-economic impact. However, and management of existing populations. We review strong taxonomic biases in the existing literature the available knowledge on non-native populations of necessitate synthesizing knowledge on emerging H. tigerinus and model its potential distribution in the invaders. The Indian bullfrog, Hoplobatrachus tiger- non-native range and globally; finally, we evaluate its inus, a large dicroglossid frog (snout to vent length: up ecological and socio-economic impact using standard to 160 mm), is native to the Indian sub-continent. impact classification schemes. We confirm successful Despite the high likelihood of invasion success for H. invasions on the Andaman archipelago and Madagas- tigerinus, based on the species’ natural history traits car. The ensemble species distribution model, with and human use, the status of its non-native populations ‘good’ predictive ability and transferability, predicts and global invasion potential has not yet been tropical regions of the world to be climatically assessed. In this paper, we provide a profile of H. suitable for the species. Considering potential for propagule pressure, we predict the climatically suit- able Mascarene Islands, Malaysia and Indonesia, and Electronic supplementary material The online version of East Africa to likely be recipients of bridgehead this article (https://doi.org/10.1007/s10530-020-02356-9) con- invasions.
    [Show full text]
  • Absence of Trypanosoma Infection Among Hoplobatrachus Tigerinus (Amphibia: Dicroglossidae) from Boeny, Western Madagascar
    Absence of Trypanosoma infection among Hoplobatrachus tigerinus (Amphibia: Dicroglossidae) from Boeny, western Madagascar Muriel N. Maeder1, Rogelin Raherinjafy1, Heritiana populations asiatiques qui sont infectées par divers Andriamahefa1,2, Beza Ramasindrazana1 & parasites sanguins. Cette étude fournit une base de Milijaona Randrianarivelojosia1,3 référence pour évaluer les hémoparasites circulants 1 Institut Pasteur de Madagascar, BP 1274, aussi bien chez les amphibiens que chez d’autres Antananarivo 101, Madagascar groupes de vertébrés de Madagascar. E-mail: [email protected], raherinjafy@pasteur. mg, [email protected], [email protected] Introduction 2 Département de Médecine Vétérinaire, Université d’Antananarivo, Antananarivo 101, Madagascar Madagascar is well-known for its considerable E-mail: [email protected] amphibian fauna (Glaw & Vences, 2007), of which 3 Faculté des Sciences, Université de Toliara, Toliara ≥ 99% are known to be endemic (Vieites et al., 2009). 601, Madagascar The highly diverse amphibian fauna is threatened by different ecological and biological pressures, including habitat loss, habitat fragmentation, Abstract pathogens, and introduced species (Andreone et al., 2014; Kolby et al., 2014; Mecke et al., 2014; Moore We investigated the presence of Trypanosoma et al., 2015). One amphibian species introduced and other blood parasites in a species of frog, to the island at the beginning of 20th century from Hoplobatrachus tigerinus, from the Boeny Region, India is the bullfrog Hoplobatrachus tigerinus and introduced to Madagascar. Blood samples (Dicroglossidae) (Poynton, 1999), which is currently collected from 134 living H. tigerinus were examined. widespread on Madagascar (Glaw & Vences, 2007) Results from microscopy and PCR analyses did and is locally exploited for food (Kosuch et al., 2001). not find any evidence of Trypanosoma infection.
    [Show full text]
  • Global Infopack
    Global InfoPack 1 TABLE OF CONTENTS Foreword............................................................................................................................................. 4 Introduction ........................................................................................................................................ 5 Section 1: Why A Campaign? ........................................................................................................... 6 The Connection Between Man and Nature ............................................................................... 6 Man’s Effect on Nature.............................................................................................................. 6 Frogs Matter.............................................................................................................................. 6 The Problem.............................................................................................................................. 7 The Reason............................................................................................................................... 7 The Solution .............................................................................................................................. 8 Getting The Word Out ............................................................................................................... 8 A Further Purpose....................................................................................................................
    [Show full text]