1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Total Page:16

File Type:pdf, Size:1020Kb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 Genetic divergence and evolutionary relationships in six species of genera 2 Hoplobatrachus and Euphlyctis (Amphibia: Anura) from Bangladesh and other 3 Asian countries revealed by mitochondrial gene sequences 4 5 Mohammad Shafiqul Alam a, Takeshi Igawa a, Md. Mukhlesur Rahman Khan b, 6 Mohammed Mafizul Islam a, Mitsuru Kuramoto c, Masafumi Matsui d, Atsushi 7 Kurabayashi a, Masayuki Sumida a* 8 9 a Institute for Amphibian Biology, Graduate School of Science, Hiroshima 10 University, Higashihiroshima 739-8526, Japan 11 b Bangladesh Agricultural University, Mymensingh-2202, Bangladesh 12 c 3-6-15 Hikarigaoka, Munakata, Fukuoka 811-3403, Japan 13 d Graduate School of Human and Environmental Studies, Kyoto University, 14 Sakyo-ku, Kyoto 606-8501, Japan 15 16 *corresponding author 17 Phone: +81-82-424-7482 18 Fax: +81-82-424-0739 19 Email: [email protected] 20 21 1 1 Abstract 2 To elucidate the species composition, genetic divergence, evolutionary 3 relationships and divergence time of Hoplobatrachus and Euphlyctis frogs (subfamily 4 Dicroglossinae, family Ranidae) in Bangladesh and other Asian countries, we 5 analyzed the mitochondrial Cyt b, 12S and 16S rRNA genes of 252 specimens. Our 6 phylogenetic analyses showed 13 major clades corresponding to several cryptic 7 species as well as to nominal species in the two genera. The results suggested 8 monophyly of Asian Hoplobatrachus species, but the position of African H. 9 occipitalis was not clarified. Nucleotide divergence and phylogenetic data suggested 10 the presence of allopatric cryptic species allied to E. hexadactylus in Sundarban, 11 Bangladesh and several parapatric cryptic species in the Western Ghats, India. The 12 presence of at least two allopatric cryptic species among diverged E. cyanophlyctis in 13 Bangladesh, India and Sri Lanka was also suggested. In some cases, our estimated 14 divergence times matched the paleogeological events of South and Southeast Asian 15 regions that may have led to the divergence of Hoplobatrachus and Euphlyctis taxa. 16 Especially, Land formation at Bangladesh (15-10 Ma) may have allowed the spread of 17 these frog taxa to Southeast Asian areas, and the aridification of central India (5.1-1.6 18 Ma) might have affected the gene flow of widely distributed species. The present 19 study revealed prior underestimation of the richness of the amphibian fauna in this 20 region, indicating the possible occurrence of many cryptic species among these groups. 2 1 Key words: Genetic divergence; Molecular phylogeny; Mitochondrial genes; 2 Divergence time; Amphibia; Hoplobatrachus; Euphlyctis; Cryptic species; 3 Bangladesh 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 3 1 1. Introduction 2 Bangladesh, located in the tropical climatic zone, features one of the world’s 3 largest deltas (Ganges–Brahmaputra river delta) formed by Miocene sedimentation 4 and subsidence during continent-continent collision (Uddin and Lundberg, 2004) and 5 is endowed with a rich diversity of unique flora and fauna. Biogeographically, this 6 country is part of the Oriental region, nestled between the Indo-Himalayan and Indo- 7 Chinese subregions of the Orient (Nishat et al., 2002). Although the amphibian fauna 8 of the Western Ghats, India includes a large number of endemic taxa (Inger and Dutta, 9 1986), the available information on Bangladesh amphibian fauna lists only 22 frog 10 species (Islam et al., 2000). A recent herpetofaunal survey reported the occurrence of 11 some interesting species in Bangladesh for the first time (Reza et al., 2007), but the 12 genetic divergence and evolutionary aspects of the herpetofauna of Bangladesh have 13 basically been neglected. 14 Among the amphibian fauna reported from Bangladesh, Hoplobatrachus and 15 Euphlyctis frogs were the most common species, and during the 1980s Bangladesh 16 was a major world supplier of frogs. The Bangladesh Government eventually banned 17 the exporting of frogs in order to maintain the country’s natural resources and 18 ecological balance. As for the genus Hoplobatrachus, H. tigerinus (Indian bullfrog) is 19 one of the most widely distributed species in Bangladesh, whereas the distribution of 20 H. crassus (Jerdon’s bullfrog) is not clear due to insufficient data (Islam et al., 2000). 21 These two species are also distributed in other Asian countries such as India, Nepal, 4 1 Bhutan, and Sri Lanka (Frost, 2007). Two more species belonging to the genus 2 Hoplobatrachus are distributed in other countries: H. chinensis in Myanmar, China, 3 Thailand, and Malaysia, and H. occipitalis in several African countries (Frost, 2007). 4 As for the genus Euphlyctis, E. cyanophlyctis (Indian skipper frog) and E. 5 hexadactylus (Indian green frog) are known from Bangladesh (Islam et al., 2000). The 6 type localities of these two species are not clear, but Frost (2007) and Bauer (1998) 7 suggested that they might be in Tranquebar and Pondichéry located in Southeast 8 India near Sri Lanka. They also show wide distribution in other Asian countries: E. 9 cyanophlyctis in India, Pakistan, Afghanistan, Nepal, Sri Lanka, Myanmar, and 10 Vietnam, and E. hexadactylus in India, Pakistan, and Sri Lanka (Frost, 2007). Among 11 them, E. cyanophlyctis from the northwestern highlands of Pakistan was recognized as 12 a subspecies, E. cyanophlyctis microspinulata (Khan, 1997). Two more species 13 belonging to the genus Euphlyctis are distributed in other Asian countries: E. ghoshi, 14 known only from its type locality (Manipur, India), and E. ehrenbergii, inhabiting the 15 southwestern Arabian Peninsula (Saudi Arabia and Yemen) (Frost, 2007). 16 It is well known that the genus Hoplobatrachus is the sister taxon to the genus 17 Euphlyctis (Kosuch et al., 2001; Grosjean et al., 2004; Kurabayashi et al., 2005; Frost 18 et al., 2006). The species of these two genera were formerly regarded as members of 19 the genus Rana. However, Dubois (1987, 1992) suggested that the genus Rana was a 20 phylogenetically heterogeneous group, and transferred many species from Rana to 21 other genera including Hoplobatrachus and Euphlyctis. Although several studies have 5 1 been performed for phylogenetic analyses of higher taxa including these genera 2 (Bossuyt et al., 2006; Kosuch et al., 2001; Roelants et al., 2004; Vences et al., 2003), 3 there has been no investigation regarding detailed species composition, genetic 4 relationships and phylogeographic patterns among Hoplobatrachus and Euphlyctis 5 groups in Bangladesh and neighboring countries. 6 The increasing utilization of molecular data has led to the reorganization of 7 amphibian taxonomy (Biju and Bossuyt, 2003; Borkin et al., 2004; Bossuyt et al., 8 2006; De la Riva et al., 2000; Frost et al., 2006 Meegaskumbura et al., 2002) and the 9 discovery of many cryptic species (Bickford et al., 2006; Fouquet et al., 2007a, b; 10 Köhler et al., 2005; Stuart et al., 2006). Recent analyses of molecular and allozyme 11 data on samples from Asian countries suggested the underestimation of diversity of 12 amphibian fauna in this region as well as among these groups (Kurabayashi et al., 13 2005; Djong et al., 2007a, b; Kuramoto et al., 2007; Sumida et al., 2007; Islam et al., 14 2008). Inger (1999) suggested that additional samplings in South Asia would 15 undoubtedly increase the number of species known from each area and illuminate 16 detailed information on the distribution of species. 17 In order to elucidate the genetic diversity and phylogenetic relationships among 18 Hoplobatrachus and Euphlyctis groups from Bangladesh and neighboring countries, 19 we performed molecular phylogenetic analyses using mitochondrial Cyt b and 12S 20 and 16S rRNA gene data from 252 frog specimens. Based on the results, we showed 21 the possible existence of several cryptic species in these frog groups. We also 6 1 estimated the divergence times among these taxa to determine the paleogeological 2 events that had caused these divergences. 3 4 2. Materials and Methods 5 2.1. Specimens 6 A total of 252 individuals consisting of four species of the genus 7 Hoplobatrachus (H. tigerinus, H. crassus, H. chinensis, and H. occipitalis) and two 8 species of the genus Euphlyctis (E. cyanophlyctis and E. hexadactylus) were used in 9 the present study (Table 1, Fig. 1). Among them, 201 individuals were collected from 10 17 localities in Bangladesh, 46 individuals from 20 localities in India, Nepal, Sri 11 Lanka, Thailand, Laos, and Vietnam, and three individuals of H. occipitalis were 12 commercially obtained from Tanzania. Species identification was based on Dubois 13 (1992) and Frost (2007) classifications. Details of specimens are shown in electric 14 supplement 1. 15 16 2.2. DNA extraction 17 Total genomic DNA for PCR was extracted from the clipped toes of each 18 specimen using a DNA extraction kit (DNeasy Tissue Kit, QIAGEN) according to the 19 manufacturer’s instructions. The extracted DNA solutions were used to amplify partial 20 fragments of Cyt b and 12S and 16S rRNA genes by polymerase chain reaction (PCR). 21 7 1 2.3. PCR and sequencing 2 PCR amplification was performed on partial sequences of Cyt b (564 bp), 12S 3 rRNA (689 bp), and 16S rRNA (517 bp) genes. These segments corresponded to the 4 sites 16785–17348, 4474–5163, and 6251–6765, respectively, in the Fejervarya 5 limnocharis complete mtDNA sequence (Accession No. AY158705, Liu et al., 2005). 6 The following sets of primers were used for PCR amplification: Cytb Fow-1-1 (Sano 7 et al., 2005) and Cytb Rev-1 (Kurabayashi, unpublished) for Cyt b gene, FS01 and 8 RFR60 for 12S rRNA gene (Sumida et al., 1998), and F51 and R51 for 16S rRNA 9 gene (Sumida et al., 2002). The sequences of the primers are available from electric TM 10 supplement 2. PCR mixtures were prepared with the TaKaRa Ex Taq Kit (TaKaRa 11 Bio Inc.) as recommended by the manufacturer’s protocol.
Recommended publications
  • Cfreptiles & Amphibians
    WWW.IRCF.ORG TABLE OF CONTENTS IRCF REPTILES &IRCF AMPHIBIANS REPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 189 27(2):288–292 • AUG 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES . Chasing BullsnakesAmphibians (Pituophis catenifer sayi) in Wisconsin: of the Melghat, On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of TreeboasMaharashtra, (Corallus grenadensis) and Humans on Grenada: India A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 RESEARCH ARTICLES Hayat A. Qureshi and Gajanan A. Wagh . Biodiversity Research Laboratory,The Texas Horned Department Lizard in of Central Zoology, and ShriWestern Shivaji Texas Science ....................... College, Emily Amravati, Henry, Jason Maharashtra–444603, Brewer, Krista Mougey, India and Gad (gaj [email protected]) 204 . The Knight Anole (Anolis equestris) in Florida .............................................Brian J. Camposano,Photographs Kenneth L. Krysko, by the Kevin authors. M. Enge, Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT . World’s Mammals in Crisis ............................................................................................................................................................. 220 . More Than Mammals .....................................................................................................................................................................
    [Show full text]
  • Research Article on Amphibian Found in Rajasthan
    International Journal of Academic Research and Development International Journal of Academic Research and Development ISSN: 2455-4197 Impact Factor: RJIF 5.22 www.academicsjournal.com Volume 2; Issue 6; November 2017; Page No. 702-706 Research article on amphibian found in Rajasthan 1 Tejas Joshi, 2 Govind Gupta, 3 Keshu Madhudiya 1, 3 Department of Applied Sciences, Madhav University, Rajasthan, India 2 Department of Agriculture, Madhav University, Rajasthan, India Abstract India have a great biodiversity. We can found different types of animals and their species. Amphibians are commonly found in every states of India. In this article we are going to talking about different types of amphibian found in Rajasthan. In This article we take two family of frog for external study purpose. We are going to discuss about family Rana and family Buffo and their characteristics. We take seven species for our acknowledgment. Those seven species are majorly found in Rajasthan. Keywords: biodiversity, amphibians, Rajasthan Introduction Rajasthan state is having area of 3.42 Lacks Sq. Km and it is the largest state in the Country. It is having 33 Districts under seven administrative divisions. In Rajasthan(ca. 1,32,077 sq. miles),amphibian fauna (frogs and toads) are common species, the western three-fifths of which form the great Indian Desert, has hitherto been hardly known except for McCann's (1943) short account of the fauna in the Abu Hills of Rajasthan. Lately the desert has been reported to be changing physio logocially and climatically. It has, therefore, become Fig 1 imperative to study it from all points of view.
    [Show full text]
  • Froglog95 New Version Draft1.Indd
    March 2011 Vol. 95 FrogLogwww.amphibians.org News from the herpetological community The new face of the ASG “Lost” Frogs Red List The global search Updating South comes to an end. Africas Red Where next? Lists. Page 1 FrogLog Vol. 95 | March 2011 | 1 2 | FrogLog Vol. 95 | March 2011 CONTENTS The Sierra Caral of Guatemala a refuge for endemic amphibians page 5 The Search for “Lost” Frogs page 12 Recent diversifi cation in old habitats: Molecules and morphology in the endangered frog, Craugastor uno page 17 Updating the IUCN Red List status of South African amphibians 6 Amphibians on the IUCN Red List: Developments and changes since the Global Amphibian Assessment 7 The forced closure of conservation work on Seychelles Sooglossidae 8 Alien amphibians challenge Darwin’s naturalization hypothesis 9 Is there a decline of amphibian richness in Bellanwila-Attidiya Sanctuary? 10 High prevalence of the amphibian chytrid pathogen in Gabon 11 Breeding-site selection by red-belly toads, Melanophryniscus stelzneri (Anura: Bufonidae), in Sierras of Córdoba, Argentina 11 Upcoming meetings 20 | Recent Publications 20 | Internships & Jobs 23 Funding Opportunities 22 | Author Instructions 24 | Current Authors 25 FrogLog Vol. 95 | March 2011 | 3 FrogLog Editorial elcome to the new-look FrogLog. It has been a busy few months Wfor the ASG! We have redesigned the look and feel of FrogLog ASG & EDITORIAL COMMITTEE along with our other media tools to better serve the needs of the ASG community. We hope that FrogLog will become a regular addition to James P. Collins your reading and a platform for sharing research, conservation stories, events, and opportunities.
    [Show full text]
  • Is Dicroglossidae Anderson, 1871 (Amphibia, Anura) an Available Nomen?
    Zootaxa 3838 (5): 590–594 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3838.5.8 http://zoobank.org/urn:lsid:zoobank.org:pub:87DD8AF3-CB72-4EBD-9AA9-5B1E2439ABFE Is Dicroglossidae Anderson, 1871 (Amphibia, Anura) an available nomen? ANNEMARIE OHLER1 & ALAIN DUBOIS Muséum National d'Histoire Naturelle, Département Systématique et Evolution, UMR7205 ISYEB, CP 30, 25 rue Cuvier, 75005 Paris 1Corresponding autho. E-mail: [email protected] Abbreviations used: BMNH, Natural History Museum, London; SVL, snout–vent length; ZMB, Zoologisch Museum, Berlin. Anderson (1871a: 38) mentioned the family nomen DICROGLOSSIDAE, without any comment, in a list of specimens of the collections of the Indian Museum of Calcutta (now the Zoological Survey of India). He referred to this family a single species, Xenophrys monticola, a nomen given by Günther (1864) to a species of MEGOPHRYIDAE from Darjeeling and Khasi Hills (India) which has a complex nomenclatural history (Dubois 1989, 1992; Deuti et al. submitted). Dubois (1987: 57), considering that the nomen DICROGLOSSIDAE had been based on the generic nomen Dicroglossus Günther, 1860, applied it to a family group taxon, the tribe DICROGLOSSINI, for which he proposed a diagnosis. The genus Dicroglossus had been erected by Günther (1860), 11 years before Anderson’s (1871a) paper, for the unique species Dicroglossus adolfi. Boulenger (1882: 17) stated that this specific nomen was a subjective junior synonym of Rana cyanophlyctis Schneider, 1799, and therefore Dicroglossus a subjective junior synonym of Rana Linnaeus, 1758 (Boulenger, 1882: 7).
    [Show full text]
  • 8431-A-2017.Pdf
    Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 8, Issue, 8, pp. 19482-19486, August, 2017 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article BATRACHOFAUNA DIVERSITY OF DHALTANGARH FOREST OF ODISHA, INDIA *Dwibedy, SK Department of Zoology, Khallikote University, Berhampur, Odisha, India DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0702 ARTICLE INFO ABSTRACT Article History: Small forests are often ignored. Their faunal resources remain hidden due to negligence. But they may be rich in animal diversity. Considering this, I have started an initial study on the batrachofauna Received 15th May, 2017 th diversity of Dhaltangarh forest. Dhaltangarh is a small reserve protected forest of Jagatsingpur Received in revised form 25 district of Odisha in India of geographical area of 279.03 acre. The duration of the study was 12 June, 2017 months. Studies were conducted by systematic observation, hand picking method, pitfall traps & Accepted 23rd July, 2017 th photographic capture. The materials used to create this research paper were a camera, key to Indian Published online 28 August, 2017 amphibians, binocular, & a frog catching net. The study yielded 10 amphibian species belonging to 4 families and 7 genera. It was concluded that this small forest is rich in amphibians belonging to Key Words: Dicroglossidae family. A new amphibian species named Srilankan painted frog was identified, Dhaltangarh, Odisha, Batrachofauna, which was previously unknown to this region. Amphibia, Anura, Dicroglossidae Copyright © Dwibedy, SK, 2017, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • The Larval Hyobranchial Skeleton of Five Anuran Species and Its Ecological Correlates (Amphibia: Anura)
    ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 16 (3/4): 133-140 133 Wien, 30. Jänner 2004 The larval hyobranchial skeleton of five anuran species and its ecological correlates (Amphibia: Anura) Das larvale Hyobranchialskelett von fünf Anurenarten und seine ökologischen Entsprechungen (Amphibia: Anura) MUHAMMAD SHARIF KHAN KURZFASSUNG Die Grobmorphologie der hyobranchialen Skelettelemente der Larven von Bufo stomaticus, Euphlyctis cyanophlyctis, Limnonectes limnocharis / L. syhadrensis, Hoplobatrachus tigerinus und Microhyla ornata wird beschrieben. Die Arten unterscheiden sich in der Gestalt ihrer buccopharyngealen Elemente, was die Eigenarten ihrer Ernährung widerspiegelt. ABSTRACT Gross morphology of the hyobranchial skeletal elements of the tadpoles of Bufo stomaticus, Euphlyctis cyanophlyctis, Limnonectes limnocharis I L. syhadrensis, Hoplobatrachus tigerinus and Microhyla ornata, is described. The tadpole species differ in details of the morphology of their bucco-pharyngeal elements, which reflects dietary preferences of each species. KEY WORDS Amphibia: Anura Bufo stomaticus, Euphlyctis cyanophlyctis, Limnonectes limnocharis, Limnonectes syhad- rensis, Hoplobatrachus tigerinus, Microhyla ornata, hyobranchial skeleton, tadpoles, larvae, morphology, feeding ecology, riparian Punjab, Pakistan INTRODUCTION Early Paleozoic vertebrates fed on 1987; SANDERSON & WASSERSUG 1989; microscopical organic particulate filtrate KHAN 1991, 1999; KHAN & MUFTI 1994a). retrieved
    [Show full text]
  • Varanus Doreanus) in Australia
    BIAWAK Journal of Varanid Biology and Husbandry Volume 11 Number 1 ISSN: 1936-296X On the Cover: Varanus douarrha The individuals depicted on the cover and inset of this issue represent a recently redescribed species of monitor lizard, Varanus douarrha (Lesson, 1830), which origi- nates from New Ireland, in the Bismark Archipelago of Papua New Guinea. Although originally discovered and described by René Lesson in 1830, the holotype was lost on its way to France when the ship it was traveling on became shipwrecked at the Cape of Good Hope. Since then, without a holotype for comparitive studies, it has been assumed that the monitors on New Ireland repre- sented V. indicus or V. finschi. Recent field investiga- tions by Valter Weijola in New Ireland and the Bismark Archipelago and phylogenetic analyses of recently col- lected specimens have reaffirmed Lesson’s original clas- sification of this animal as a distinct species. The V. douarrha depicted here were photographed by Valter Weijola on 17 July and 9 August 2012 near Fis- soa on the northern coast of New Ireland. Both individu- als were found basking in coconut groves close to the beach. Reference: Weijola, V., F. Kraus, V. Vahtera, C. Lindqvist & S.C. Donnellan. 2017. Reinstatement of Varanus douarrha Lesson, 1830 as a valid species with comments on the zoogeography of monitor lizards (Squamata: Varanidae) in the Bismarck Archipelago, Papua New Guinea. Australian Journal of Zoology 64(6): 434–451. BIAWAK Journal of Varanid Biology and Husbandry Editor Editorial Review ROBERT W. MENDYK BERND EIDENMÜLLER Department of Herpetology Frankfurt, DE Smithsonian National Zoological Park [email protected] 3001 Connecticut Avenue NW Washington, DC 20008, US RUSTON W.
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 27 (April 2017), 217–229 Herpetological Journal FULL PAPER Published by the British Trophic segregation of anuran larvae in two temporary Herpetological Society tropical ponds in southern Vietnam Anna B. Vassilieva1,2,3, Artem Y. Sinev3 & Alexei V. Tiunov1,2 1A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia 2Joint Russian-Vietnamese Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam 3Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119911, Russia Trophic differentiation of tadpoles of four anuran species (Hoplobatrachus rugulosus, Microhyla fissipes, M. heymonsi, Polypedates megacephalus) with different oral morphologies was studied in temporary ponds in a monsoon tropical forest in southern Vietnam. All tadpole species were found to be omnivorous, including filter-feeding microhylids. Both gut contents analysis and stable isotope analysis provided enough evidence of resource partitioning among coexisting species. Gut contents analysis supported the expected partitioning of food resources by tadpoles with different oral morphologies and showed differences in the food spectra of filter-feeding and grazing species. Stable isotope analysis revealed more complex trophic niche segregation among grazers, as well as amongst filter-feeders. Tadpole species differed mainly in δ13C values, indicating a dependency on carbon sources traceable to either of aquatic or terrestrial origins. Furthermore, tadpoles with generalised grazing oral morphology (P. megacephalus) can start feeding as suspension feeders and then shift to the rasping mode. Controlled diet experiment with P. megacephalus larvae showed a diet-tissue isotopic fractionation of approximately 1.9‰ and 1.2‰ for Δ13C and Δ15N, respectively.
    [Show full text]
  • Anuran Diversity Distribution Patterns in Lower Dibang Valley of Arunachal Pradesh, India
    Herpetology Notes, volume 11: 781-789 (2018) (published online on 27 September 2018) Anuran diversity distribution patterns in Lower Dibang Valley of Arunachal Pradesh, India Jayanta K. Roy1,2*, Ramie H. Begum1, and M. Firoz Ahmed2 Abstract. The present study was conducted to estimate the anuran species diversity distribution patterns at Lower Dibang Valley with respect to secondary habitat conservation. Time-constrained Visual Encounter Surveys (VES) were conducted for amphibians followed with opportunistic observations during the study period. We compared the species diversity from three land use/land cover types that explained the available habitats and the importance of secondary forest in recolonizing anuran species during the course of study. Interestingly, anuran diversity measured from secondary/abandoned jhum and primary forest areas were found to be relatively equal (Shannon index; H: 2.77 and 2.76). The highest percentage of unique species was recorded from primary forest followed by secondary/abundant jhum and agriculture/settlement areas. However, secondary/abandoned jhum areas provided refuge for most anuran species normally inhabiting primary forest. We found beneficial human interaction along with secondary succession for creating habitat heterogeneity in secondary/abundant forest; and thus supports maximum anuran breeding habitats and species diversity in secondary/abundant jhum areas. Hence, secondary/abundant habitats were also important for anuran habitat conservation along with primary forest. We reported four new distribution records from Arunachal Pradesh: Nanorana chayuensis, Hydrophylax leptoglossa, Odorrana chloronota and Theloderma moloch. Keywords. Arunachal Pradesh, anuran diversity, habitat heterogeneity, land use/land cover, Lower Dibang Valley Introduction et al., 2005), followed by vegetation cover and local microclimate (Rios-Lopez and Aide, 2007).
    [Show full text]
  • Red List of Bangladesh 2015
    Red List of Bangladesh Volume 1: Summary Chief National Technical Expert Mohammad Ali Reza Khan Technical Coordinator Mohammad Shahad Mahabub Chowdhury IUCN, International Union for Conservation of Nature Bangladesh Country Office 2015 i The designation of geographical entitles in this book and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, International Union for Conservation of Nature concerning the legal status of any country, territory, administration, or concerning the delimitation of its frontiers or boundaries. The biodiversity database and views expressed in this publication are not necessarily reflect those of IUCN, Bangladesh Forest Department and The World Bank. This publication has been made possible because of the funding received from The World Bank through Bangladesh Forest Department to implement the subproject entitled ‘Updating Species Red List of Bangladesh’ under the ‘Strengthening Regional Cooperation for Wildlife Protection (SRCWP)’ Project. Published by: IUCN Bangladesh Country Office Copyright: © 2015 Bangladesh Forest Department and IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: Of this volume IUCN Bangladesh. 2015. Red List of Bangladesh Volume 1: Summary. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp. xvi+122. ISBN: 978-984-34-0733-7 Publication Assistant: Sheikh Asaduzzaman Design and Printed by: Progressive Printers Pvt.
    [Show full text]
  • A New Species of Euphlyctis (Amphibia, Anura, Dicroglossidae) from the West Coastal Plains of India
    Asian Herpetological Research 2016, 7(4): 229–241 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.160020 A New Species of Euphlyctis (Amphibia, Anura, Dicroglossidae) from the West Coastal Plains of India Hebbar PRITI1,2, Chandrakanth Rukkappa NAIK3, Kadaba Shamanna SESHADRI4, Ramit SINGAL5, Madhava Kulkarni VIDISHA6, Gudasalmani RAVIKANTH1 and Kotambylu Vasudeva GURURAJA6,7,* 1Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Sriramapura, Jakkur (P.O), Bangalore 560054, India 2 Manipal University, Manipal 576104, India 3 Wildlife Range, Kumbaravada, Nujji Section, Dandeli Anshi Tiger Reserve, Joida Taluk, 581187, India 4 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Block S3, Singapore 5 Independent Researcher, B-14, Law Apartments, Karkardooma, Delhi 110092, India 6 Gubbi Labs LLP, Science and Media Center, WS-5, I Floor, Entrepreneurship Center, Indian Institute of Science Campus, Bengaluru 560012, India 7 Srishti Institute of Art, Design and Technology, N4, Yelahanka New Town, Bengaluru 560064, India Abstract The genus Euphlyctis is widely distributed across Southwestern Arabian Peninsula into parts of Southeast Asia. Five of the seven known Euphlyctis species are found within the Indian subcontinent. Here, we describe a new species, Euphlyctis karaavali sp. nov. from South-west coast of India, which was discovered during surveys engaging citizens. This species was identified to be distinct based on molecular and morphological evidence. We provide a detailed description of this species along with its call description and compare it with closest congeners. Previous studies in the region had identified this species as E. hexadactylus but suggested the possibility of it being cryptic.
    [Show full text]
  • A Method to Distinguish Intensively Farmed from Wild Frogs
    Received: 23 March 2016 | Revised: 30 January 2017 | Accepted: 6 February 2017 DOI: 10.1002/ece3.2878 ORIGINAL RESEARCH Stable isotope analyses—A method to distinguish intensively farmed from wild frogs Carolin Dittrich | Ulrich Struck | Mark-Oliver Rödel Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Abstract Germany Consumption of frog legs is increasing worldwide, with potentially dramatic effects for Correspondence ecosystems. More and more functioning frog farms are reported to exist. However, Mark-Oliver Rödel, Museum für Naturkunde, due to the lack of reliable methods to distinguish farmed from wild- caught individuals, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany. the origin of frogs in the international trade is often uncertain. Here, we present a new Email: [email protected] methodological approach to this problem. We investigated the isotopic composition of Funding information legally traded frog legs from suppliers in Vietnam and Indonesia. Muscle and bone tis- 15 13 18 Museum für Naturkunde Berlin; MfN sue samples were examined for δ N, δ C, and δ O stable isotope compositions, to Innovation fund; Leibniz Association′s Open Access Publishing Fund elucidate the conditions under which the frogs grew up. We used DNA barcoding (16S rRNA) to verify species identities. We identified three traded species (Hoplobatrachus rugulosus, Fejervarya cancrivora and Limnonectes macrodon); species identities were 15 18 partly deviating from package labeling. Isotopic values of δ N and δ O showed sig- 15 nificant differences between species and country of origin. Based on low δ N compo- sition and generally little variation in stable isotope values, our results imply that frogs from Vietnam were indeed farmed.
    [Show full text]