Our Pacific Heritage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Skull of the Upper Cretaceous Snake Dinilysia Patagonica Smith-Woodward, 1901, and Its Phylogenetic Position Revisited
Zoological Journal of the Linnean Society, 2012, 164, 194–238. With 24 figures The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited HUSSAM ZAHER1* and CARLOS AGUSTÍN SCANFERLA2 1Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, SP, Brasil 2Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Angel Gallardo 470 (1405), Buenos Aires, Argentina Received 23 April 2010; revised 5 April 2011; accepted for publication 18 April 2011 The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high-resolution X-ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard-like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenes- tralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister-taxon to all extant snakes. -
The Solomon Islands
THE SOLOMON ISLANDS 14 SEPTEMBER – 7 OCTOBER 2007 TOUR REPORT LEADER: MARK VAN BEIRS Rain, mud, sweat, steep mountains, shy, skulky birds, shaky logistics and an airline with a dubious reputation, that is what the Solomon Islands tour is all about, but these forgotten islands in the southwest Pacific also hold some very rarely observed birds that very few birders will ever have the privilege to add to their lifelist. Birdquest’s fourth tour to the Solomons went without a hiccup. Solomon Airlines did a great job and never let us down, it rained regularly and we cursed quite a bit on the steep mountain trails, but the birds were out of this world. We birded the islands of Guadalcanal, Rennell, Gizo and Malaita by road, cruised into Ranongga and Vella Lavella by boat, and trekked up into the mountains of Kolombangara, Makira and Santa Isabel. The bird of the tour was the incredible and truly bizarre Solomon Islands Frogmouth that posed so very, very well for us. The fantastic series of endemics ranged from Solomon Sea Eagles, through the many pigeons and doves - including scope views of the very rare Yellow-legged Pigeon and the bizarre Crested Cuckoo- Dove - and parrots, from cockatoos to pygmy parrots, to a biogeographer’s dream array of myzomelas, monarchs and white-eyes. A total of 146 species were seen (and another 5 heard) and included most of the available endemics, but we also enjoyed a close insight into the lifestyle and culture of this traditional Pacific country, and into the complex geography of the beautiful forests and islet-studded reefs. -
Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and Relationship to Environmental Change
Palaeontologia Electronica http://palaeo-electronica.org SNAKES OF THE SIWALIK GROUP (MIOCENE OF PAKISTAN): SYSTEMATICS AND RELATIONSHIP TO ENVIRONMENTAL CHANGE Jason J. Head ABSTRACT The lower and middle Siwalik Group of the Potwar Plateau, Pakistan (Miocene, approximately 18 to 3.5 Ma) is a continuous fluvial sequence that preserves a dense fossil record of snakes. The record consists of approximately 1,500 vertebrae derived from surface-collection and screen-washing of bulk matrix. This record represents 12 identifiable taxa and morphotypes, including Python sp., Acrochordus dehmi, Ganso- phis potwarensis gen. et sp. nov., Bungarus sp., Chotaophis padhriensis, gen. et sp. nov., and Sivaophis downsi gen. et sp. nov. The record is dominated by Acrochordus dehmi, a fully-aquatic taxon, but diversity increases among terrestrial and semi-aquatic taxa beginning at approximately 10 Ma, roughly coeval with proxy data indicating the inception of the Asian monsoons and increasing seasonality on the Potwar Plateau. Taxonomic differences between the Siwalik Group and coeval European faunas indi- cate that South Asia was a distinct biogeographic theater from Europe by the middle Miocene. Differences between the Siwalik Group and extant snake faunas indicate sig- nificant environmental changes on the Plateau after the last fossil snake occurrences in the Siwalik section. Jason J. Head. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA. [email protected] School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom. KEY WORDS: Snakes, faunal change, Siwalik Group, Miocene, Acrochordus. PE Article Number: 8.1.18A Copyright: Society of Vertebrate Paleontology May 2005 Submission: 3 August 2004. -
Naracoorte Caves National Park
Department for Environment and Heritage Naracoorte Caves National Park Australian Fossil Mammal Site World Heritage Area www.environment.sa.gov.au Naracoorte Caves Vegetation Wonambi Fossil Centre National Par The vegetation is predominantly Brown Stringybark Step through the doors of the Wonambi Fossil Australian Fossil Mammal Site on the limestone ridge, with River Red Gum lining the Centre into an ancient world where megafauna World Heritage Area banks of the Mosquito Creek. The understorey on the once roamed. The display in the Wonambi Fossil ridge is bracken fern over a diverse array of orchids Centre ‘brings to life’ the megafauna fossils found in the Naracoorte Caves. The self-guided walk Naracoorte Caves National Park covers that flower during spring. through the simulated forest and swampland is approximately 600 hectares of limestone wheelchair accessible and suitable for all ages. ranges and is situated in the Some of the park was cleared for pine forests in the south-east of South Australia, mid 1800s, with other exotic species planted around The Flinders University Gallery has information 10 km south of Naracoorte. the caves. Many of the pines have now been cleared and areas revegetated with endemic species. The panels depicting the various sciences studied at Naracoorte, and touch screen computers to answer The area was first gardens now consist of native plants although a few questions you may have relating to the Wonambi dedicated a forestry of the historic trees remain. Fossil Centre and the fossils of Naracoorte Caves. reserve in 1882, with Fauna the first caretaker Southern employed to look Bentwing Bat The National Parks Code after the caves in The most common marsupial seen at Naracoorte is the Western Grey Kangaroo. -
Solomon Islands
Solomon Islands By Tan"a LearY Local RETA Consultant fuIomonldands 1993 v(ff#**frffifm@& Leary Tanla SolomonlsLurds : state of lhe enrii.roiqen:t reporrt / Tanya Leary. l. Erlvlionrnerrtal audittng Z, M:arihe re,sorsce-s- $olomon lsJan& g. Environmetrtiil Folicy-961"*ort Islands tr South Paciflc. Regional Environrnenr Programm€- IL Tltle 33,71 ISBN Itepared for publtaarioh by the S-ou h Faeifiq,Rqional Environment hogfamme. Apia Westenr Sarnoa @ copyriEht South Faelfic ReElonal Environmenr ftogrammq 1992, The Solltb Fac|,fte Regrqnal Environmerrl progpannre aulhorises the reproduction of tagtual materiial, wlnle of Bart, ln any form, provtded appropriate aeknowledgemcnt is glven Illustralive natertal qanrrot b-e reproduced wlrhour permisslon of the ar$st. Solomon Islands stote of the environment repott t ,-*.-- a f,\r \^al-) IUCN : !zE s5 MONOO SOtrOm:On ISIA1dS wEsrRN ''bo VELIA l-trVALlA I t6'8. RANoNTA 'eO;- fr rom*rrl '.LordEANGA*^ ffk ^," f $o'rorf@Al s.E.A r.EDon,,m\ 0 J| y'*" i" /r\fGoRGtA e- vANc,tNDU S'U'g i CR.{TR.AL RUssELL.g/ frr* D //: ffi,^,^ o "u*+aosAvo(4:p#. (/ r60t o {**u V^"ktr-A|/w^'n e f /uxxre y'), 4*ru *ro PActFIc ocEAN x".pl ucr F ur,n** f, DlAKIRA s[irc.lANA dl TEI{OTU ooE*rq4 $ oEo Latu\f 0 o u'rupuA ,g 20 4g 60 80 l0o ft vaulono f"DUFF @ NeUonatceplot a Trowrtt Noneo; ln bold ere ltKoptA a grorprovinccs FATAKA- r'.AN!JTA 'lojs Ira Foreword This document represents a concise report on the state of the Environment for solomon Islands. -
A Diverse Snake Fauna from the Early Eocene of Vastan Lignite Mine, Gujarat, India
A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India JEAN−CLAUDE RAGE, ANNELISE FOLIE, RAJENDRA S. RANA, HUKAM SINGH, KENNETH D. ROSE, and THIERRY SMITH Rage, J.−C., Folie, A., Rana, R.S., Singh, H., Rose, K.D., and Smith, T. 2008. A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 53 (3): 391–403. The early Eocene (Ypresian) Cambay Formation of Vastan Lignite Mine in Gujarat, western India, has produced a di− verse assemblage of snakes including at least ten species that belong to the Madtsoiidae, Palaeophiidae (Palaeophis and Pterosphenus), Boidae, and several Caenophidia. Within the latter taxon, the Colubroidea are represented by Russel− lophis crassus sp. nov. (Russellophiidae) and by Procerophis sahnii gen. et sp. nov. Thaumastophis missiaeni gen. et sp. nov. is a caenophidian of uncertain family assignment. At least two other forms probably represent new genera and spe− cies, but they are not named; both appear to be related to the Caenophidia. The number of taxa that represent the Colubroidea or at least the Caenophidia, i.e., advanced snakes, is astonishing for the Eocene. This is consistent with the view that Asia played an important part in the early history of these taxa. The fossils come from marine and continental levels; however, no significant difference is evident between faunas from these levels. The fauna from Vastan Mine in− cludes highly aquatic, amphibious, and terrestrial snakes. All are found in the continental levels, including the aquatic palaeophiids, whereas the marine beds yielded only two taxa. -
Burrowing Into the Inner World of Snake Evolution 15 March 2018
Burrowing into the inner world of snake evolution 15 March 2018 "So, we compared the inner ears of Yurlunggur and Wonambi to those of 81 snakes and lizards of known ecological habits," Dr. Palci says. "We concluded that Yurlunggur was partly adapted to burrow underground, while Wonambi was more of a generalist, likely at ease in more diverse environments." These interpretations are supported by other features of the skull and skeleton of the two snakes, as well as by palaeoclimate, which implies they had quite different environmental preferences (Wonambi preferred much cooler and drier Credit: Flinders University habitats). Dr. Palci is specialising in the origin, phylogenetic relationships, and evolutionary history and Looking inside the head of a snake is so much diversification of major taxonomic groups, with a easier when the snake is a fossil. special focus on living and fossil squamates (a group of reptiles that includes lizards, Flinders University and South Australian Museum amphisbaenians, and snakes). postdoctoral researcher Alessandro Palci and other evolutionary palaeontology experts have Squamate reptiles, with over 9,000 known species, used high-resolution computer tomography (CT) to represent an ideal study group to investigate look inside the inner ears of two important evolution. Australian fossil snakes – the 23 million-year-old Yurlunggur from northern Australia, and the much The research revolves around several projects in younger Wonambi, from southern Australia, which collaborations with researchers at the South went extinct only about 50,000 years ago. Australian Museum, Flinders University, the University of Adelaide and University of Alberta. These snakes are important because they are considered close to the base of the evolutionary Digital images (see below) of the fossil snakes tree of snakes, and can thus provide some Yurlunggur and Wonambi reveal the inner ear information on what the earliest snakes looked like mostly consists of a large central portion termed and how they lived, says Dr. -
Birds New Zealand 28 Dec 2016
COLOUR S Blyth’s Hornbill is one of the largest flying bird species in the Solomon Islands. This is a male at Mt Austen, Guadalcanal. S A Sphinx-like pair of Solomons Nightjars on Tetepare. S The elusive Melanesian Megapode is quite easy to see on Tetepare. Photo supplied by Allan Bero. Photo by Michael Szabo. S The flightless Roviana Rail was not described until 1991. S Female Blyth’s Hornbill at Mt Austen, Guadalcanal. 10 BIRDS NEW ZEALAND ӏ Number 12 December 2016 COLOUR S Solomons Sea Eagle is the apex forest predator S At 9cm Finsch’s Pygmy Parrot is one of the world’s smallest on the main Solomon Islands. parrots – even smaller than the New Zealand Rock Wren. S The endemic Rennell Shrikebill is frequently seen on S The Yellow-bibbed Lory is endemic to the eastern Solomons, Rennell. This is a male bird. Photo by Angus Hogg. from Guadalcanal to Rennell. Solomon Islands – Giant Eagles and Pygmy Parrots Words by Michael Szabo and Photographs by Lars Petersson I was bewitched by Solomons Nightjars, mesmerised by for bird species to have reached them from New Guinea, while Melanesian Megapodes, and transfixed by the Roviana Rail. the archipelago is fragmented enough for endemic species to You would be captivated, too, if you saw the amazing variety have evolved locally. This helps explain why the major Solomon of birds in the Solomon Islands that I did during a ten-day Islands have been identified as the richest “Endemic Bird Area” in birdwatching tour in July. the world, with 70 restricted-range land bird species. -
THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3
RESEARCH CATCHING the MARSUPIAL ‘LION’ by the TAIL: THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3 1School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia; 2School of Biological Sciences, Flinders University, Bedford Park, SA, Australia; 3Naracoorte Lucindale Council, Naracoorte, SA, Australia. “Thylacoleo exemplifies the simplest and most effective dental machinery for predatory life and carnivorous diet known in the Mammalian class. It is the extreme modification, to this end, of the Diprotodont type of Marsupialia.” Owen (1866) Introduction defending Thylacoleo as “A very gentle beast, and of good conscience” (Macleay 1859). Macleay based his Of all the extinct Australian Pleistocene megafauna argument on Thylacoleo’s relationship with other species, Thylacoleo carnifex (the marsupial ‘lion’) has Diprotodont marsupials, most of which are herbivores. captured the imagination and interest of people more Gerard Krefft, Curator of the Australian Museum, was than any other. Perhaps it is the allure of its predatory almost equally as unimpressed with Thylacoleo’s habits, (Australia’s Pleistocene answer to T. rex); or the carnivory, opining that it “…was not much more intriguing notion that it used caves as dens (Lundelius, carnivorous than the Phalangers (possums) of present 1966 ). It is certainly an enigma and, as Owen (1866) time.” (Krefft, 1866). Owen, meanwhile, had received an suggested, an extreme and meat-eating version of the almost complete skull from the Darling Downs, in otherwise herbivorous diprotodont marsupials. Queensland and published a more detailed paper, Spectacular fossil finds over the past few decades have further describing the skull and teeth of Thylacoleo, put to rest much of the speculation regarding its habits acknowledging its diprotodont affiliation but more and morphology. -
1 TABLE S1 Global List of Extinct and Extant Megafaunal Genera By
Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky TABLE S1 Global list of extinct and extant megafaunal genera by continent. STATUS TAXON TIME AFRICA Mammalia Carnivora Felidae Acinonyx Panthera Hyaenidae Crocuta Hyaena Ursidae Ursusa Primates Gorilla Proboscidea Elephantidae C Elephas <100 Loxodonta Perissodactyla Equidae S Equus <100 E Hipparion <100 Rhinocerotidae Ceratotherium Diceros E Stephanorhinus <100 Artiodactyla Bovidae Addax Ammotragus Antidorcas Alcelaphus Aepyceros C Bos 11.5-0 Capra Cephalopus Connochaetes Damaliscus Gazella S Hippotragus <100 Kobus E Rhynotragus/Megalotragus 11.5-0 Oryx E Pelorovis 11.5-0 E Parmulariusa <100 Redunca Sigmoceros Syncerus Taurotragus Tragelaphus Camelidae C Camelus <100 1 Supplemental Material: Annu. Rev. Ecol. Syst.. 2006. 37:215-50 doi: 10.1146/annurev.ecolsys.34.011802.132415 Late Quaternary Extinctions: State of the Debate Koch and Barnosky Cervidae E Megaceroides <100 Giraffidae S Giraffa <100 Okapia Hippopotamidae Hexaprotodon Hippopotamus Suidae Hylochoerus Phacochoerus Potamochoerus Susa Tubulidenta Orycteropus AUSTRALIA Reptilia Varanidae E Megalania 50-15.5 Meiolanidae E Meiolania 50-15.5 E Ninjemys <100 Crocodylidae E Palimnarchus 50-15.5 E Quinkana 50-15.5 Boiidae? E Wonambi 100-50 Aves E Genyornis 50-15.5 Mammalia Marsupialia Diprotodontidae E Diprotodon 50-15.5 E Euowenia <100 E Euryzygoma <100 E Nototherium <100 E Zygomaturus 100-50 Macropodidae S Macropus 100-50 E Procoptodon <100 E Protemnodon 50-15.5 E Simosthenurus 50-15.5 E Sthenurus 100-50 Palorchestidae E Palorchestes 50-15.5 Thylacoleonidae E Thylacoleo 50-15.5 Vombatidae S Lasiorhinus <100 E Phascolomys <100 E Phascolonus 50-15.5 E Ramsayia <100 2 Supplemental Material: Annu. -
Climate Change Frames Debate Over the Extinction of Megafauna in Sahul (Pleistocene Australia-New Guinea) Stephen Wroea,B, Judith H
PERSPECTIVE PERSPECTIVE Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea) Stephen Wroea,b, Judith H. Fielda,1, Michael Archera, Donald K. Graysonc, Gilbert J. Priced, Julien Louysd, J. Tyler Faithe, Gregory E. Webbd, Iain Davidsonf, and Scott D. Mooneya aSchool of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; bSchool of Engineering, University of Newcastle, NSW 2308, Australia; cDepartment of Anthropology and Quaternary Research Center, University of Washington, Seattle, WA 98195; dSchool of Earth Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; eSchool of Social Science, The University of Queensland, St. Lucia, QLD 4072, Australia; and fSchool of Humanities, University of New England, Armidale, NSW 2351, Australia Edited by James O’Connell, University of Utah, Salt Lake City, UT, and approved April 9, 2013 (received for review February 12, 2013) Around 88 large vertebrate taxa disappeared from Sahul sometime during the Pleistocene, with the majority of losses (54 taxa) clearly taking place within the last 400,000 years. The largest was the 2.8-ton browsing Diprotodon optatum, whereas the ∼100- to 130-kg marsupial lion, Thylacoleo carnifex, the world’s most specialized mammalian carnivore, and Varanus priscus, the largest lizard known, were formidable predators. Explanations for these extinctions have centered on climatic change or human activities. Here, we review the evidence and argu- ments for both. Human involvement in the disappearance of some species remains possible but unproven. Mounting evidence points to the loss of most species before the peopling of Sahul (circa 50–45 ka) and a significant role for climate change in the disappearance of the continent’s megafauna. -
Adobe PDF, Job 6
Noms français des oiseaux du Monde par la Commission internationale des noms français des oiseaux (CINFO) composée de Pierre DEVILLERS, Henri OUELLET, Édouard BENITO-ESPINAL, Roseline BEUDELS, Roger CRUON, Normand DAVID, Christian ÉRARD, Michel GOSSELIN, Gilles SEUTIN Éd. MultiMondes Inc., Sainte-Foy, Québec & Éd. Chabaud, Bayonne, France, 1993, 1re éd. ISBN 2-87749035-1 & avec le concours de Stéphane POPINET pour les noms anglais, d'après Distribution and Taxonomy of Birds of the World par C. G. SIBLEY & B. L. MONROE Yale University Press, New Haven and London, 1990 ISBN 2-87749035-1 Source : http://perso.club-internet.fr/alfosse/cinfo.htm Nouvelle adresse : http://listoiseauxmonde.multimania.