THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Skull of the Upper Cretaceous Snake Dinilysia Patagonica Smith-Woodward, 1901, and Its Phylogenetic Position Revisited
Zoological Journal of the Linnean Society, 2012, 164, 194–238. With 24 figures The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited HUSSAM ZAHER1* and CARLOS AGUSTÍN SCANFERLA2 1Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, SP, Brasil 2Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Angel Gallardo 470 (1405), Buenos Aires, Argentina Received 23 April 2010; revised 5 April 2011; accepted for publication 18 April 2011 The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high-resolution X-ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard-like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenes- tralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister-taxon to all extant snakes. -
SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm. -
Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and Relationship to Environmental Change
Palaeontologia Electronica http://palaeo-electronica.org SNAKES OF THE SIWALIK GROUP (MIOCENE OF PAKISTAN): SYSTEMATICS AND RELATIONSHIP TO ENVIRONMENTAL CHANGE Jason J. Head ABSTRACT The lower and middle Siwalik Group of the Potwar Plateau, Pakistan (Miocene, approximately 18 to 3.5 Ma) is a continuous fluvial sequence that preserves a dense fossil record of snakes. The record consists of approximately 1,500 vertebrae derived from surface-collection and screen-washing of bulk matrix. This record represents 12 identifiable taxa and morphotypes, including Python sp., Acrochordus dehmi, Ganso- phis potwarensis gen. et sp. nov., Bungarus sp., Chotaophis padhriensis, gen. et sp. nov., and Sivaophis downsi gen. et sp. nov. The record is dominated by Acrochordus dehmi, a fully-aquatic taxon, but diversity increases among terrestrial and semi-aquatic taxa beginning at approximately 10 Ma, roughly coeval with proxy data indicating the inception of the Asian monsoons and increasing seasonality on the Potwar Plateau. Taxonomic differences between the Siwalik Group and coeval European faunas indi- cate that South Asia was a distinct biogeographic theater from Europe by the middle Miocene. Differences between the Siwalik Group and extant snake faunas indicate sig- nificant environmental changes on the Plateau after the last fossil snake occurrences in the Siwalik section. Jason J. Head. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA. [email protected] School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom. KEY WORDS: Snakes, faunal change, Siwalik Group, Miocene, Acrochordus. PE Article Number: 8.1.18A Copyright: Society of Vertebrate Paleontology May 2005 Submission: 3 August 2004. -
Naracoorte Caves National Park
Department for Environment and Heritage Naracoorte Caves National Park Australian Fossil Mammal Site World Heritage Area www.environment.sa.gov.au Naracoorte Caves Vegetation Wonambi Fossil Centre National Par The vegetation is predominantly Brown Stringybark Step through the doors of the Wonambi Fossil Australian Fossil Mammal Site on the limestone ridge, with River Red Gum lining the Centre into an ancient world where megafauna World Heritage Area banks of the Mosquito Creek. The understorey on the once roamed. The display in the Wonambi Fossil ridge is bracken fern over a diverse array of orchids Centre ‘brings to life’ the megafauna fossils found in the Naracoorte Caves. The self-guided walk Naracoorte Caves National Park covers that flower during spring. through the simulated forest and swampland is approximately 600 hectares of limestone wheelchair accessible and suitable for all ages. ranges and is situated in the Some of the park was cleared for pine forests in the south-east of South Australia, mid 1800s, with other exotic species planted around The Flinders University Gallery has information 10 km south of Naracoorte. the caves. Many of the pines have now been cleared and areas revegetated with endemic species. The panels depicting the various sciences studied at Naracoorte, and touch screen computers to answer The area was first gardens now consist of native plants although a few questions you may have relating to the Wonambi dedicated a forestry of the historic trees remain. Fossil Centre and the fossils of Naracoorte Caves. reserve in 1882, with Fauna the first caretaker Southern employed to look Bentwing Bat The National Parks Code after the caves in The most common marsupial seen at Naracoorte is the Western Grey Kangaroo. -
Hdl 128344.Pdf
PUBLISHED VERSION Elizabeth Reed The contribution of cave sites to the understanding of Quaternary Australian megafauna records Proceedings of the 17th International Congress of Speleology, Volume 1 Edition 2, 2017 / Moore, K., White, S. (ed./s), vol.1, pp.2 © 2017 Australian Speleological Federation Inc, This work is licensed under Creative Commons Attribution ShareAlike International License (CC-BY-SA). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Individual Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution ShareAlike which allows others to freely access, use, and share the work, with an acknowledgement of the work’s authorship and its initial presentation at the 17th International Congress of Speleology, Sydney NSW Australia.. Published version https://www.caves.org.au/resources/category/37-conference- proceedings?start=40 PERMISSIONS http://creativecommons.org/licenses/by/4.0/ 6 October 2020 http://hdl.handle.net/2440/128344 Te Contribution of Cave Sites to the Understanding of Quaternary Australian Megafauna Records. Elizabeth Reed1,2 Afliation: 1Environment Institute and School of Physical Sciences, Te University of Adelaide, Adelaide, South Australia, AUSTRALIA. 2Palaeontology department, South Australian Museum, Adelaide, South Australia. Abstract Since the frst discoveries of megafauna fossils in the Wellington Valley of New South Wales in the 1830s, caves have featured prominently in the study of Quaternary Australia. Today, most of the well-dated, strati- fed Quaternary megafauna sites are known from caves. Tis refects the relatively stable preservation environment within Australian caves, where skeletal remains may lay undisturbed for hundreds of thousands of years. -
A Diverse Snake Fauna from the Early Eocene of Vastan Lignite Mine, Gujarat, India
A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India JEAN−CLAUDE RAGE, ANNELISE FOLIE, RAJENDRA S. RANA, HUKAM SINGH, KENNETH D. ROSE, and THIERRY SMITH Rage, J.−C., Folie, A., Rana, R.S., Singh, H., Rose, K.D., and Smith, T. 2008. A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 53 (3): 391–403. The early Eocene (Ypresian) Cambay Formation of Vastan Lignite Mine in Gujarat, western India, has produced a di− verse assemblage of snakes including at least ten species that belong to the Madtsoiidae, Palaeophiidae (Palaeophis and Pterosphenus), Boidae, and several Caenophidia. Within the latter taxon, the Colubroidea are represented by Russel− lophis crassus sp. nov. (Russellophiidae) and by Procerophis sahnii gen. et sp. nov. Thaumastophis missiaeni gen. et sp. nov. is a caenophidian of uncertain family assignment. At least two other forms probably represent new genera and spe− cies, but they are not named; both appear to be related to the Caenophidia. The number of taxa that represent the Colubroidea or at least the Caenophidia, i.e., advanced snakes, is astonishing for the Eocene. This is consistent with the view that Asia played an important part in the early history of these taxa. The fossils come from marine and continental levels; however, no significant difference is evident between faunas from these levels. The fauna from Vastan Mine in− cludes highly aquatic, amphibious, and terrestrial snakes. All are found in the continental levels, including the aquatic palaeophiids, whereas the marine beds yielded only two taxa. -
Burrowing Into the Inner World of Snake Evolution 15 March 2018
Burrowing into the inner world of snake evolution 15 March 2018 "So, we compared the inner ears of Yurlunggur and Wonambi to those of 81 snakes and lizards of known ecological habits," Dr. Palci says. "We concluded that Yurlunggur was partly adapted to burrow underground, while Wonambi was more of a generalist, likely at ease in more diverse environments." These interpretations are supported by other features of the skull and skeleton of the two snakes, as well as by palaeoclimate, which implies they had quite different environmental preferences (Wonambi preferred much cooler and drier Credit: Flinders University habitats). Dr. Palci is specialising in the origin, phylogenetic relationships, and evolutionary history and Looking inside the head of a snake is so much diversification of major taxonomic groups, with a easier when the snake is a fossil. special focus on living and fossil squamates (a group of reptiles that includes lizards, Flinders University and South Australian Museum amphisbaenians, and snakes). postdoctoral researcher Alessandro Palci and other evolutionary palaeontology experts have Squamate reptiles, with over 9,000 known species, used high-resolution computer tomography (CT) to represent an ideal study group to investigate look inside the inner ears of two important evolution. Australian fossil snakes – the 23 million-year-old Yurlunggur from northern Australia, and the much The research revolves around several projects in younger Wonambi, from southern Australia, which collaborations with researchers at the South went extinct only about 50,000 years ago. Australian Museum, Flinders University, the University of Adelaide and University of Alberta. These snakes are important because they are considered close to the base of the evolutionary Digital images (see below) of the fossil snakes tree of snakes, and can thus provide some Yurlunggur and Wonambi reveal the inner ear information on what the earliest snakes looked like mostly consists of a large central portion termed and how they lived, says Dr. -
Megafauna Extinction
Episode 15 Teacher Resource 2nd June 2020 Megafauna Extinction 1. Before watching the BTN story, record what you know about Students will learn more about Australian megafauna and megafauna. investigate why they became 2. What is megafauna? extinct. 3. About how many years ago did megafauna exist in Australia? a. 4,000 b. 40,000 c. 400,000 Science – Year 6 The growth and survival of living 4. Complete the following sentence. A Diprotodon was a giant things are affected by physical _________________. conditions of their environment. 5. What did palaeontologist Dr Scott Hocknull and his team discover? Science – Year 7 6. Where did they make the discovery? Scientific knowledge has changed peoples’ understanding of the 7. What did they use to create images of what the megafauna might world and is refined as new have looked like? evidence becomes available. 8. Give some examples of the megafauna species they discovered. Interactions between organisms, 9. What might have caused megafauna to become extinct? including the effects of human 10. What did you learn watching the BTN story? activities can be represented by food chains and food webs. What do you know about megafauna? As a class discuss the BTN Megafauna Extinction story and ask students to record what they learnt watching the story. Record any questions they have. Here are some questions they can use to help guide their discussion. • What does the term megafauna mean? • When did megafauna exist? • How do we know they existed? • Why did megafauna grow so big? • What might have caused Australia’s megafauna to die out? Glossary Students will brainstorm a list of key words and terms that relate to the BTN Megafauna Extinction story. -
Megafauna Fossils
Episode 20 Teacher Resource 1st August 2017 Megafauna Fossils Students will develop a deeper 1. What does the BTN story explain? understanding of Australian megafauna and fossils 2. On which island were fossils found recently? 3. What is the name of someone who studies fossils? a. Ecologist b. Biologist c. Palaeontologist 4. Explain what scientists found on the island. Science – Year 6 5. Name three facts you learnt about the Tasmanian Tiger. The growth and survival of living 6. What does Aaron say about the possibility of the thylacine being alive things are affected by physical conditions of their today? environment (ACSSU094) 7. Describe what a diprotodon looks like. 8. What can the footprints found on Kangaroo Island tell us? Science – Year 7 9. Illustrate an aspect of the story? Scientific knowledge has changed peoples’ understanding of the world 10. What did you like about the Fossil Footprints story? and is refined as new evidence becomes available (ACSHE119) Interactions between organisms, including the effects of human activities can be represented by food chains and food Negotiate with students how many activities they will need to complete. webs(ACSSU112) • Students develop a glossary of words and terms that relate to fossils and megafauna. Below are some words to get them started. Add words and meanings to your glossary as you come across unfamiliar words throughout your research. Consider using pictures and diagrams to illustrate meanings. extinct fossil megafauna palaeontologist thylacine diprotodon • What do you THINK about what you saw in the Megafauna Fossils story? What does this video make you WONDER? o Think of three questions you have about the BTN Megafauna Fossils story. -
Marsupial Lions & Methodological Omnivory
Marsupial Lions & Methodological Omnivory: Function, Success and Reconstruction in Paleobiology Penultimate Version, published in Biology & Philosophy Abstract Historical scientists frequently face incomplete data, and lack direct experimental access to their targets. This has led some philosophers and scientists to be pessimistic about the epistemic potential of the historical sciences. And yet, historical science often produces plausible, sophisticated hypotheses. I explain this capacity to generate knowledge in the face of apparent evidential scarcity by examining recent work on Thylacoleo carnifex, the ‘marsupial lion’. Here, we see two important methodological features. First, historical scientists are methodological omnivores, that is, they construct purpose-built epistemic tools tailored to generate evidence about highly specific targets. This allows them to produce multiple streams of independent evidence and thus maximize their epistemic reach. Second, investigative scaffolding: research proceeds in a piece-meal fashion, information only gaining evidential relevance once certain hypotheses are well supported. I illustrate scaffolding in a discussion of the nature of functional ascription in paleobiology. Frequently, different senses of ‘function’ are not discriminated during paleobiological investigation—something which can mar adaptationist investigations of extant organisms. However, I argue that, due to scaffolding, conflating senses of ‘function’ can be the right thing to do. Coarse grained functional hypotheses are required before it is clear what evidence could discriminate between more fine-grained ones. I draw on omnivory and scaffolding to argue that pessimists make a bad empirical bet. It is a bad idea to bet against the epistemic fortunes of such opportunistic and resourceful scientists, especially when we have reason to think we will systematically underestimate the amount of evidence ultimately available to them. -
Australia's Lost Giants
Reading Australia’s Lost Giants What happened to Australia’s megafauna, the giant animals that once existed across this enormous continent? A In 1969, a fossil hunter named Rod Wells came to Naracoorte in South Australia to explore what was then known as Victoria Cave. Wells clawed through narrow passages, and eventually into a huge chamber. Its floor of red soil was littered with strange objects. It took Wells a moment to realize what he was looking at; the bones of thousands of creatures that must have fallen through holes in the ground above and become trapped. Some of the oldest belonged to mammals far larger than any found today in Australia. They were the ancient Australian megafauna – huge animals of the Pleistocene epoch. In boneyards across the continent, scientists have found the fossils of a giant snake, a huge flightless bird, and a seven foot kangaroo, to name but a few. Given how much ink has been spilled on the extinction of the dinosaurs, it’s a wonder that even more hasn’t been devoted to megafauna. Prehistoric humans never threw spears at Tyrannosaurus rex but really did hunt mammoths and mastodons. B The disappearance of megafauna in America – mammoths, saber-toothed cats, giant sloths, among others – happened relatively soon after the arrival of human beings, about 13,000 years ago. In the 1960s, paleoecologist Paul Martin developed what became known as the blitzkrieg hypothesis. Modern humans, Martin said, created havoc as they spread through the Americas, wielding spears to annihilate animals that had never faced a technological predator. -
A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition.