Systematic and Palaeobiological Implications of Postcranial Morphology in the Diprotodontidae (Marsupialia)

Total Page:16

File Type:pdf, Size:1020Kb

Systematic and Palaeobiological Implications of Postcranial Morphology in the Diprotodontidae (Marsupialia) Systematic and palaeobiological implications of postcranial morphology in the Diprotodontidae (Marsupialia) Aaron B. Camens School of Earth and Environmental Sciences Discipline of Ecology and Evolutionary Biology The University of Adelaide South Australia A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy at the University of Adelaide February 2010 II Declaration This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Aaron Camens and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. Publications in this thesis include: Camens, A. B. and Wells, R.T. 2009. Diprotodontid footprints from the Pliocene of Central Australia. Journal of Vertebrate Paleontology 29: 863-869. Copyright held by Taylor and Francis. Camens, A. B. and Wells, R.T. 2010. Palaeobiology of Euowenia grata (Marsupialia: Diprotodontinae) and its presence in Northern South Australia. Journal of Mammalian Evolution 17: 3-19, DOI 10.1007/s10914-009-9121-2. Copyright held by Springer. ………………………… Aaron Camens III Table of Contents CHAPTER 1 Introduction 1 1.1 Introduction to the Diprotodontidae 1 1.2 Systematic relationships in the Diprotodontidae 2 1.2.1 Sub-family incertae sedis 3 1.2.1.1 Nototherium 3 1.2.1.2 Sthenomerus 5 1.2.2 Sub-family Diprotodontinae 5 1.2.2.1 Ngapakaldia 5 1.2.2.2 Pitikantia 6 1.2.2.3 Bematherium 6 1.2.2.4 Pyramios 7 1.2.2.5 Euowenia 7 1.2.2.6 Meniscolophus 8 1.2.2.7 Euryzygoma 8 1.2.2.8 Diarcodon 8 1.2.2.9 Diprotodon 9 1.2.3 Sub-family Zygomaturinae 11 1.2.3.1 Raemeotherium 11 1.2.3.2 Silvabestius 12 1.2.3.3 Alkwertatherium 12 1.2.3.4 Nimbadon 13 1.2.3.5 Neohelos 13 1.2.3.6 Plaisiodon 14 1.2.3.7 Kolopsis 14 1.2.3.8 Kolopsoides 15 1.2.3.9 Maokopia 15 1.2.3.10 Hulitherium 16 1.2.3.11 Zygomaturus 16 1.3 Diprotodontid palaeobiology 18 1.3.1 Sub-family Diprotodontinae 18 1.3.1.1 Ngapakaldia 18 1.3.1.2 Pitikantia 19 1.3.1.3 Pyramios 19 1.3.1.4 Meniscolophus 19 1.3.1.5 Euowenia 19 1.3.1.6 Euryzygoma 19 1.3.1.7 Diprotodon 20 1.3.2 Sub-family Zygomaturinae 23 1.3.2.1 Raemeotherium 23 1.3.2.2 Silvabestius 23 1.3.2.3 Alkwertatherium 23 1.3.2.4 Nimbadon 23 1.3.2.5 Neohelos 23 1.3.2.6 Plaisiodon 24 1.3.2.7 Kolopsis 24 IV 1.3.2.8 Kolopsoides 24 1.3.2.9 Maokopia 24 1.3.2.10 Hulitherium 25 1.3.2.11 Zygomaturus 25 1.4 Thesis aims 27 1.5 References 28 1.6 Appendix 1 35 CHAPTER 2 Camens, A.B., Wells, R.T. (2010). Palaeobiology of Euowenia 37 grata (Marsupialia: Diprotodontinae) and its presence in northern South Australia. Journal of Mammalian Evolution. DOI 10.1007/s10914-009-9121-2. CHAPTER 3 Camens, A.B., Wells, R.T. (2009). Diprotodontid footprints from 55 the Pliocene of Central Australia. Journal of Vertebrate Paleontology 29, 863-869. CHAPTER 4 Camens, A.B., Carey, S.P., Cupper, M.L., Grün, R., Hellstrom, J.C., 63 McKnight, S.W., McLennan, I., Trusler, P. and Aubert, M. (to be submitted) Megamarsupial palaeobiology revealed from fossil trackways of the Victorian Volcanic Plains, Australia. Quaternary Science Reviews. CHAPTER 5 Diprotodontid functional morphology and palaeobiology inferred 116 from postcranial anatomy. 5.1 Introduction 116 5.2 Methods 119 5.2.1 Included taxa 119 5.2.2 Abbreviations 119 5.2.2.1 Institutions 119 5.2.2.2 Hind limb abbreviations 120 5.2.2.3 Fore limb abbreviations 121 5.2.3 Measurements 121 5.3 Results 5.3 Morphological descriptions 122 5.3.1 Subfamily Diprotodontinae 122 5.3.1.1 Ngapakaldia 122 5.3.1.1.1 Morphology of the hindlimb 122 5.3.1.1.2 Morphology of the forelimb 129 5.3.1.2 Euowenia 136 5.3.1.1.2.1 Morphology of the hindlimb 136 5.3.1.1.2.2 Morphology of the forelimb 142 5.3.1.3 Diprotodon 147 5.3.1.3.1 Morphology of the hindlimb 147 5.3.1.3.2 Morphology of the forelimb 155 5.3.2 Subfamily Zygomaturinae 162 5.3.2.1 Nimbadon 162 5.3.2.1.1 Morphology of the hindlimb 162 5.3.2.1.2 Morphology of the forelimb 168 5.3.2.2 Neohelos 176 5.3.2.2.1 Morphology of the hindlimb 176 5.3.2.2.2 Morphology of the forelimb 181 5.3.2.3 Plaisiodon 185 V 5.3.2.3.1 Morphology of the hindlimb 185 5.3.2.3.2 Morphology of the forelimb 191 5.3.2.4 Kolopsis 195 5.3.2.4.1 Morphology of the hindlimb 195 5.3.2.4.2 Morphology of the forelimb 200 5.3.2.5 Zygomaturus 204 5.3.2.5.1 Morphology of the hindlimb 204 5.3.2.5.2 Morphology of the forelimb 212 5.4 Discussion 219 5.4 Functional morphological and palaeobiological interpretations 219 5.4.1 Sub-family Diprotodontinae 221 5.4.1.1 Ngapakaldia 221 5.4.1.1.1 Hindlimb morphological implications 221 5.4.1.1.2 Forelimb morphological implications 223 5.4.1.2 Euowenia 226 5.4.1.2.1 Hindlimb morphological implications 226 5.4.1.2.2 Forelimb morphological implications 227 5.4.1.3 Diprotodon 229 5.4.1.3.1 Hindlimb morphological implications 229 5.4.1.3.2 Forelimb morphological implications 233 5.4.2 Sub-family Zygomaturinae 237 5.4.2.1 Nimbadon 237 5.4.2.1.1 Hindlimb morphological implications 237 5.4.2.1.2 Forelimb morphological implications 239 5.4.2.2 Neohelos 242 5.4.2.2.1 Hindlimb morphological implications 242 5.4.2.2.2 Forelimb morphological implications 244 5.4.2.3 Plaisiodon 246 5.4.2.3.1 Hindlimb morphological implications 246 5.4.2.3.2 Forelimb morphological implications 247 5.4.2.4 Kolopsis 248 5.4.2.4.1 Hindlimb morphological implications 248 5.4.2.4.2 Forelimb morphological implications 250 5.4.2.5 Zygomaturus 252 5.4.2.5.1 Hindlimb morphological implications 252 5.4.2.5.2 Forelimb morphological implications 254 5.5 Conclusion 257 5.6 References 259 5.7 Appendices 269 5.7.1 Appendix 1: List of non-diprotodontid specimens used 269 5.8 Figures 271 CHAPTER 6: A phylogeny of the Diprotodontidae (Marsupialia) based on 295 postcranial morphology. 6.1 Introduction 295 6.1.1 Interfamilial relationships 296 6.1.2 Intrafamilial relationships 299 6.1.3 Postcrania in the Diprotodontidae 302 6.2 Methods 303 VI 6.2.1 Included taxa 303 6.2.2 Institutions 304 6.2.3 Abbreviations 304 6.2.3.1 Hind limb abbreviations 304 6.2.3.2 Fore limb abbreviations 305 6.2.4 Phylogenetic analyses 306 6.2.5 Character description 309 6.2.5.1 Characters relating to the hindlimbs 310 6.2.5.1.1 The Pes 310 6.2.5.1.2 Characters relating to bones of the hind limb 321 6.2.5.2 Forelimb characters used in cladistic analysis 325 6.2.5.2.1 The Manus 325 6.2.5.2.2 Characters relating to the forelimb bones 332 6.3 Results 337 6.3 Phylogenetic analysis 337 6.3.1 Hindlimb character set only 337 6.3.1.1 Intrafamilial analyses 337 6.3.1.2 Interfamilial analyses 343 6.3.1.3 Character states related to functional grouping 354 6.3.2 Forelimb character set only 357 6.3.2.1 Intrafamilial analyses 357 6.3.2.2 Interfamilial analyses 363 6.3.2.3 Character states related to functional grouping 378 6.3.2.4 Character states related to phylogenetic grouping 381 6.3.3 Combined analyses (forelimb and hindlimb) 384 6.3.3.1 Intrafamilial analyses 384 6.3.3.2 Interfamilial analyses 385 6.3.4 Comparison to forelimb-only and hindlimb-only analyses 388 6.4 Discussion 389 6.4 Phylogenetic implications of postcranial anatomy 389 6.4.1 Hindlimb analyses 379 6.4.2 Forelimb analyses 391 6.5 Conclusion 398 6.6 References 399 6.7 Appendices 409 6.7.1 Appendix 1: List of non-diprotodontid specimens used 409 6.7.2 Appendix 2: Character matrix 410 6.7.3 Appendix 3: Supporting characters for various nodes 410 6.8 Figures 421 CHAPTER 7: General Discussion 454 7.1 Thesis summary and aims 454 7.2 Project findings 454 7.2.1 The functional morphology of the hindlimb of E.
Recommended publications
  • SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
    Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm.
    [Show full text]
  • Pleistocene Mammals and Paleoecology of the Western Amazon
    PLEISTOCENE MAMMALS AND PALEOECOLOGY OF THE WESTERN AMAZON By ALCEU RANCY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1991 . To Cleusa, Bianca, Tiago, Thomas, and Nono Saul (Pistolin de Oro) . ACKNOWLEDGMENTS This work received strong support from John Eisenberg (chairman) and David Webb, both naturalists, humanists, and educators. Both were of special value, contributing more than the normal duties as members of my committee. Bruce MacFadden provided valuable insights at several periods of uncertainty. Ronald Labisky and Kent Redford also provided support and encouragement. My field work in the western Amazon was supported by several grants from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) , and the Universidade Federal do Acre (UFAC) , Brazil. I also benefitted from grants awarded to Ken Campbell and Carl Frailey from the National Science Foundation (NSF) I thank Daryl Paul Domning, Jean Bocquentin Villanueva, Jonas Pereira de Souza Filho, Ken Campbell, Jose Carlos Rodrigues dos Santos, David Webb, Jorge Ferigolo, Carl Frailey, Ernesto Lavina, Michael Stokes, Marcondes Costa, and Ricardo Negri for sharing with me fruitful and adventurous field trips along the Amazonian rivers. The CNPq and the Universidade Federal do Acre, supported my visit to the. following institutions (and colleagues) to examine their vertebrate collections: iii . ; ; Universidade do Amazonas, Manaus
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Revision of Basal Macropodids from the Riversleigh World Heritage Area with Descriptions of New Material of Ganguroo Bilamina Cooke, 1997 and a New Species
    Palaeontologia Electronica palaeo-electronica.org Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species K.J. Travouillon, B.N. Cooke, M. Archer, and S.J. Hand ABSTRACT The relationship of basal macropodids (Marsupialia: Macropodoidea) from the Oligo-Miocene of Australia have been unclear. Here, we describe a new species from the Bitesantennary Site within the Riversleigh’s World Heritage Area (WHA), Ganguroo bites n. sp., new cranial and dental material of G. bilamina, and reassess material pre- viously described as Bulungamaya delicata and ‘Nowidgee matrix’. We performed a metric analysis of dental measurements on species of Thylogale which we then used, in combination with morphological features, to determine species boundaries in the fossils. We also performed a phylogenetic analysis to clarify the relationships of basal macropodid species within Macropodoidea. Our results support the distinction of G. bil- amina, G. bites and B. delicata, but ‘Nowidgee matrix’ appears to be a synonym of B. delicata. The results of our phylogenetic analysis are inconclusive, but dental and cra- nial features suggest a close affinity between G. bilamina and macropodids. Finally, we revise the current understanding of basal macropodid diversity in Oligocene and Mio- cene sites at Riversleigh WHA. K.J. Travouillon. School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia and School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales 2052, Australia. [email protected] B.N. Cooke. Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia.
    [Show full text]
  • Marsupialia: Ektopodontidae): Including a New Species Ektopodon Litolophus
    Records of the Western Australian Museum Supplement No. 57: 255-264 (1999). Additions to knowledge about ektopodontids (Marsupialia: Ektopodontidae): including a new species Ektopodon litolophus Neville S. Pledge!, Michael Archer, Suzanne J. Hand2and Henk Godthelp2 1 South Australian Museum, North Terrace, Adelaide, SA 5000; email: [email protected] 2 School of Biological Science, University of New South Wales, Sydney, NSW 2052 Abstract - Information about the extinct phalangeroid family Ektopodontidae has been increased following the discovery of new material from several localities. A new species, Ektopodon litolophus, described on the basis of an Ml from the Leaf Locality, Lake Ngapakaldi, Lake Eyre Basin, is characterized by the extremely simple structure of the crests. Ektopodontids are recorded for the first time from the northern half of the Australian continent through discovery of a tooth fragment at Wayne's Wok Site, Riversleigh World Heritage area, northwestern Queensland. Comparisons of Ml of Olllnia and Ektopodon species now allow evolutionary trends of simplification to be discerned. INTRODUCTION million years; Woodburne et al. 1985), following Ektopodon is a genus of extinct possum-like preliminary analyses by W.K. Harris of pollen from marsupials established by Stirton et al. (1967) on the Etadunna Formation at Mammalon Hill, Lake isolated teeth found at the Early to Middle Miocene Palankarinna. Subsequent work with Leaf Locality (Kutjamarpu Local Fauna) at Lake Ngapakaldi, northeastern South Australia (Figure 1). Further specimens from this locality were described and interpreted by Woodburne and Clemens (1986b), together with new, slightly older Oligocene species in the plesiomorphic genus CJmnia (c. illuminata, C. sp. cf. C.
    [Show full text]
  • Pliocene), Falc6n State, Venezuela, Its Relationship with the Asterostemma Problem, and the Paleobiogeography of the Glyptodontinae ALFREDO A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Pal&ontologische Zeitschrift 2008, Vol. 82•2, p. 139-152, 30-06-2008 New Glyptodont from the Codore Formation (Pliocene), Falc6n State, Venezuela, its relationship with the Asterostemma problem, and the paleobiogeography of the Glyptodontinae ALFREDO A. CARLINI, La Plata; ALFREDO E. ZURITA, La Plata; GUSTAVO J. SCILLATO-YANI~, La Plata; RODOLFO S,&,NCHEZ, Urumaco & ORANGEL A. AGUILERA, Coro with 3 figures CARLINI, A.A.; ZURITA,A.E.; SCILLATO-YANI~,G.J.; S.~NCHEZ,R. & AGUILERA,O.A. 2008. New Glyptodont from the Codore Formation (Pliocene), Falc6n State, Venezuela, its relationship with the Asterostemma problem, and the paleo- biogeography of the Glyptodontinae. - Palaontologische Zeitschrift 82 (2): 139-152, 3 figs., Stuttgart, 30. 6. 2008. Abstract: One of the basal Glyptodontidae groups is represented by the Propalaehoplophorinae (late Oligocene - mid- dle Miocene), whose genera (Propalaehoplophorus, Eucinepeltus, Metopotoxus, Cochlops, and Asterostemma) were initially recognized in Argentinian Patagonia. Among these, Asterostemma was characterized by its wide latitudinal distribution, ranging from southernmost (Patagonia) to northernmost (Colombia, Venezuela) South America. How- ever, the generic assignation of the Miocene species from Colombia and Venezuela (A.? acostae, A. gigantea, and A. venezolensis) was contested by some authors, who explicitly accepted the possibility that these species could corre- spond to a new genus, different from those recognized in southern areas. A new comparative study of taxa from Argen- tinian Patagonia, Colombia and Venezuela (together with the recognition of a new genus and species for the Pliocene of the latter country) indicates that the species in northern South America are not Propalaehoplophorinae, but represent the first stages in the cladogenesis of the Glyptodontinae glyptodontids, the history of which was heretofore restricted to the late Miocene - early Holocene of southernmost South America.
    [Show full text]
  • Timing and Dynamics of Late Pleistocene Mammal Extinctions in Southwestern Australia
    Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia Gavin J. Prideauxa,1, Grant A. Gullya, Aidan M. C. Couzensb, Linda K. Ayliffec, Nathan R. Jankowskid, Zenobia Jacobsd, Richard G. Robertsd, John C. Hellstrome, Michael K. Gaganc, and Lindsay M. Hatcherf aSchool of Biological Sciences, Flinders University, Bedford Park, South Australia 5042, Australia; bSchool of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia; cResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia; dCentre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; eSchool of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; and fAugusta–Margaret River Tourism Association, Margaret River, Western Australia 6285, Australia Edited by Paul L. Koch, University of California, Santa Cruz, CA, and accepted by the Editorial Board November 1, 2010 (received for review July 27, 2010) Explaining the Late Pleistocene demise of many of the world’s larger tims, falling in alongside sediments and charcoal that were washed terrestrial vertebrates is arguably the most enduring and debated in via now-blocked solution pipes, although tooth marks on some topic in Quaternary science. Australia lost >90% of its larger species bones suggest that the carnivores Sarcophilus and Thylacoleo by around 40 thousand years (ka) ago, but the relative importance played a minor accumulating role. of human impacts and increased aridity remains unclear. Resolving To establish an environmental background against which TEC the debate has been hampered by a lack of sites spanning the last faunal changes could be analyzed, we investigated stratigraphic glacial cycle.
    [Show full text]
  • Relative Demographic Susceptibility Does Not Explain the Extinction Chronology of Sahul's Megafauna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342303; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: Relative demographic susceptibility does not explain the 2 extinction chronology of Sahul’s megafauna 3 Short title: Demographic susceptibility of Sahul’s megafauna 4 5 Corey J. A. Bradshaw1,2,*, Christopher N. Johnson3,2, John Llewelyn1,2, Vera 6 Weisbecker4,2, Giovanni Strona5, and Frédérik Saltré1,2 7 1 Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 8 South Australia 5001, Australia, 2 ARC Centre of Excellence for Australian Biodiversity and Heritage, 9 EpicAustralia.org, 3 Dynamics of Eco-Evolutionary Pattern, University of Tasmania, Hobart, Tasmania 10 7001, Australia, 4 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 11 South Australia 5001, Australia, 5 Research Centre for Ecological Change, University of Helsinki, 12 Viikinkaari 1, Biocentre 3, 00790, Helsinki, Finland 13 14 * [email protected] (CJAB) 15 ORCIDs: C.J.A. Bradshaw: 0000-0002-5328-7741; C.N. Johnson: 0000-0002-9719-3771; J. 16 Llewelyn: 0000-0002-5379-5631; V. WeisbecKer: 0000-0003-2370-4046; F. Saltré: 0000- 17 0002-5040-3911 18 19 Keywords: vombatiformes, macropodiformes, flightless birds, carnivores, extinction 20 Author Contributions: C.J.A.B and F.S. conceptualized the paper, and C.J.A.B.
    [Show full text]
  • Palaeoproteomics Resolves Sloth Relationships
    ARTICLES https://doi.org/10.1038/s41559-019-0909-z Palaeoproteomics resolves sloth relationships Samantha Presslee1,2,3,24, Graham J. Slater4,24, François Pujos5, Analía M. Forasiepi5, Roman Fischer 6, Kelly Molloy7, Meaghan Mackie3,8, Jesper V. Olsen 8, Alejandro Kramarz9, Matías Taglioretti10, Fernando Scaglia10, Maximiliano Lezcano11, José Luis Lanata 11, John Southon12, Robert Feranec13, Jonathan Bloch14, Adam Hajduk15, Fabiana M. Martin16, Rodolfo Salas Gismondi 17, Marcelo Reguero18, Christian de Muizon19, Alex Greenwood20,21, Brian T. Chait 7, Kirsty Penkman22, Matthew Collins3,23 and Ross D. E. MacPhee2* The living tree sloths Choloepus and Bradypus are the only remaining members of Folivora, a major xenarthran radiation that occupied a wide range of habitats in many parts of the western hemisphere during the Cenozoic, including both continents and the West Indies. Ancient DNA evidence has played only a minor role in folivoran systematics, as most sloths lived in places not conducive to genomic preservation. Here we utilize collagen sequence information, both separately and in combination with published mitochondrial DNA evidence, to assess the relationships of tree sloths and their extinct relatives. Results from phylo- genetic analysis of these datasets differ substantially from morphology-based concepts: Choloepus groups with Mylodontidae, not Megalonychidae; Bradypus and Megalonyx pair together as megatherioids, while monophyletic Antillean sloths may be sister to all other folivorans. Divergence estimates are consistent with fossil evidence for mid-Cenozoic presence of sloths in the West Indies and an early Miocene radiation in South America. he sloths (Xenarthra, Folivora), nowadays a taxonomically consensus8–10,16,17 in morphology-based phylogenetic treatments is narrow (six species in two genera) component of the fauna of to place the three-toed sloth as sister to all other folivorans (Fig.
    [Show full text]
  • Mammalia, Xenarthra, Phyllophaga)
    Palaeontologia Electronica palaeo-electronica.org Dimorphism in Quaternary Scelidotheriinae (Mammalia, Xenarthra, Phyllophaga) Ángel R. Miño-Boilini and Alfredo E. Zurita ABSTRACT The contributions concerning possible cases of sexual dimorphisms in fossil and living sloths are scarce. Until now, studies in fossil ground sloth sexual dimorphism have been limited to the subfamilies Megatheriinae (Eremotherium) and Mylodontinae (Paramylodon) from the Pliocene and Pleistocene of South America and North Amer- ica. Scelidotheriinae constitutes an endemic lineage of ground sloths from South American, with a biochron age ranging the lapse “Friasian”-Lujanian SALMAs (middle Miocene-early Holocene). An integral phylogenetic and taxonomic revision of the Qua- ternary Scelidotheriinae shows that it is possible to recognize three genera and six species: Scelidotherium Owen (Scelidotherium leptocephalum and S. bravardi), Val- gipes Gervais (Valgipes bucklandi), and Catonyx Ameghino (Catonyx cuvieri, C. tari- jensis, and C. chiliensis). One of the most noticeable aspects in some specimens analyzed (n= 47) was the presence of two morphtypes in each species at the level of the dorsal crests of the skull (parasagittal crests and sagittal crest) and at the level of the distal-most region of the mandible (only in C. tarijensis). In all but two species (S. leptocephalum and S. bravardi) the two types involve the absence and presence of a sagittal crest. We suggest that specimens with sagittal crest are males, and specimens lacking sagittal crest are females. This represents the third reported ground sloth clade with evidence of sexual dimorphism of the skull and mandible. Ángel R. Miño-Boilini. Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) y Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste.
    [Show full text]
  • Book of Abstracts Australian Mammal Society Conference 2020
    BOOK OF ABSTRACTS Alphabetical author index on page 31 EASTERN GREY KANGAROO POPULATION DYNAMICS Rachel Bergeron1, David Forsyth2,3, Wendy King1,4 and Marco Festa-Bianchet1,4 1 Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada 2 Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW 2800, Australia 3 School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia 4 School of Biological Sciences, Australian National University, Acton, ACT 2601, Australia Email: [email protected] Twitter: @festa_bianchet Recent studies of density-dependence in herbivore population dynamics seek to identify the mechanisms underlying these changes. Kangaroo populations experience large fluctuations in size. Early research suggested that rainfall was a good predictor of population changes through its effect on per capita food availability. Population dynamics of large herbivores, however, are likely influenced by interactions between stochastic environmental variation and density dependence. Vital rates can respond differently to environmental variation and to changes in density. In particular, juvenile survival is most sensitive to harsh conditions, and adult survival rarely affected. Consequently, an improved understanding of population dynamics requires monitoring of individuals of known sex and age under a variety of environmental conditions. I will investigate how density, age structure and environmental conditions affect the population dynamics of eastern grey kangaroos (Macropus giganteus) at Wilsons Promontory National Park, Victoria, where >1200 individuals of known age and sex have been monitored since 2008. I will test the hypothesis that environmental conditions and density dependence have interacting and age-specific roles in generating changes in population size.
    [Show full text]
  • A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
    www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition.
    [Show full text]