Biology 251 Fall 2015 1 TOPIC 7: PERIPHERAL NERVOUS SYSTEM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Precisely-Timed Inhibition of Gustatory Cortex On
1 Impact of precisely-timed inhibition of gustatory cortex 2 on taste behavior depends on single-trial ensemble 3 dynamics ∗1 2 y3 4 Narendra Mukherjee , Joseph Wachukta , and Donald B Katz 1,2,3 5 Program in Neuroscience, Brandeis University 1,2,3 6 Volen National Center for Complex Systems, Brandeis University 3 7 Department Of Psychology, Brandeis University 8 Abstract 9 Sensation and action are necessarily coupled during stimulus perception – while tasting, 10 for instance, perception happens while an animal decides to expel or swallow the substance 11 in the mouth (the former via a behavior known as “gaping”). Taste responses in the ro- 12 dent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate 13 epochs that culminate in the emergence of action-related firing. Population analyses re- 14 veal this emergence to be a sudden, coherent and variably-timed ensemble transition that 15 reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives 16 gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly 17 delayed gaping, but only when they preceded the action-related transition - thus, the same 18 perturbation impacted behavior or not, depending on the transition latency in that partic- 19 ular trial. Our results suggest a distributed attractor network model of taste processing, 20 and a dynamical role for cortex in driving motor behavior. ∗[email protected] [email protected] 1 21 1 Introduction 22 One of the primary purposes of sensory processing is to drive action, such that the source 23 of sensory information is either acquired or avoided (in the process generating new sensory 24 input, Prinz(1997), Wolpert and Kawato(1998), Wolpert and Ghahramani(2000)). -
Food, Food Chemistry and Gustatory Sense
Food, Food Chemistry and Gustatory Sense COOH N H María González Esguevillas MacMillan Group Meeting May 12th, 2020 Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue country social act culture age pleasure election It is fundamental for our life Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue OH O HO O O HO OH O O O limonin OH O O orange taste HO O O O 5-caffeoylquinic acid Coffee taste OH H iPr N O Me O O 2-decanal Capsaicinoids Coriander taste Chilli burning sensation Astray, G. EJEAFChe. 2007, 6, 1742-1763 Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques de Man, J. M. Principles of Food Chemistry 1999, Springer Science Fennema, O. R. Food Chemistry. 1985, 2nd edition New York: Marcel Dekker, Inc Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques carbo- hydrates water minerals lipids flavors vitamins protein food enzymes colors additive Fennema, O. R. Food Chemistry. -
Somatosensory Function in Speech Perception
Somatosensory function in speech perception Takayuki Itoa, Mark Tiedea,b, and David J. Ostrya,c,1 aHaskins Laboratories, 300 George Street, New Haven, CT 06511; bResearch Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139; and cDepartment of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, Canada H3A 1B1 Edited by Fernando Nottebohm, The Rockefeller University, Millbrook, NY, and approved December 4, 2008 (received for review October 7, 2008) Somatosensory signals from the facial skin and muscles of the vocal taken from a computer-generated continuum between the words tract provide a rich source of sensory input in speech production. head and had. We found that perception of these speech sounds We show here that the somatosensory system is also involved in varied in a systematic manner depending on the direction of skin the perception of speech. We use a robotic device to create stretch. The presence of any perceptual change at all depended patterns of facial skin deformation that would normally accom- on the temporal pattern of the stretch, such that perceptual pany speech production. We find that when we stretch the facial change was present only when the timing of skin stretch was skin while people listen to words, it alters the sounds they hear. comparable to that which occurs during speech production. The The systematic perceptual variation we observe in conjunction findings are consistent with the hypothesis that the somatosen- with speech-like patterns of skin stretch indicates that somatosen- sory system is involved in the perceptual processing of speech. sory inputs affect the neural processing of speech sounds and The findings underscore the idea that there is a broad nonau- shows the involvement of the somatosensory system in the per- ditory basis to speech perception (17–21). -
Identification of Human Gustatory Cortex by Activation Likelihood Estimation
r Human Brain Mapping 32:2256–2266 (2011) r Identification of Human Gustatory Cortex by Activation Likelihood Estimation Maria G. Veldhuizen,1,2 Jessica Albrecht,3 Christina Zelano,4 Sanne Boesveldt,3 Paul Breslin,3,5 and Johan N. Lundstro¨m3,6,7* 1Affective Sensory Neuroscience, John B. Pierce Laboratory, New Haven, Connecticut 2Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 3Monell Chemical Senses Center, Philadelphia, Pennsylvania 4Department of Neurology, Northwestern University, Chicago, Illinois 5Department of Nutritional Sciences, Rutgers University School of Environmental and Biological Sciences, New Brunswick, New Jersey 6Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 7Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden r r Abstract: Over the last two decades, neuroimaging methods have identified a variety of taste-responsive brain regions. Their precise location, however, remains in dispute. For example, taste stimulation activates areas throughout the insula and overlying operculum, but identification of subregions has been inconsistent. Furthermore, literature reviews and summaries of gustatory brain activations tend to reiterate rather than resolve this ambiguity. Here, we used a new meta-analytic method [activation likelihood estimation (ALE)] to obtain a probability map of the location of gustatory brain activation across 15 studies. The map of activa- tion likelihood values can also serve as a source of independent coordinates for future region-of-interest anal- yses. We observed significant cortical activation probabilities in: bilateral anterior insula and overlying frontal operculum, bilateral mid dorsal insula and overlying Rolandic operculum, and bilateral posterior insula/parietal operculum/postcentral gyrus, left lateral orbitofrontal cortex (OFC), right medial OFC, pre- genual anterior cingulate cortex (prACC) and right mediodorsal thalamus. -
Taste Quality Representation in the Human Brain
bioRxiv preprint doi: https://doi.org/10.1101/726711; this version posted August 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. bioRxiv (2019) Taste quality representation in the human brain Jason A. Avery?, Alexander G. Liu, John E. Ingeholm, Cameron D. Riddell, Stephen J. Gotts, and Alex Martin Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States 20892 Submitted Online August 5, 2019 SUMMARY In the mammalian brain, the insula is the primary cortical substrate involved in the percep- tion of taste. Recent imaging studies in rodents have identified a gustotopic organization in the insula, whereby distinct insula regions are selectively responsive to one of the five basic tastes. However, numerous studies in monkeys have reported that gustatory cortical neurons are broadly-tuned to multiple tastes, and tastes are not represented in discrete spatial locations. Neu- roimaging studies in humans have thus far been unable to discern between these two models, though this may be due to the relatively low spatial resolution employed in taste studies to date. In the present study, we examined the spatial representation of taste within the human brain us- ing ultra-high resolution functional magnetic resonance imaging (MRI) at high magnetic field strength (7-Tesla). During scanning, participants tasted sweet, salty, sour and tasteless liquids, delivered via a custom-built MRI-compatible tastant-delivery system. Our univariate analyses revealed that all tastes (vs. tasteless) activated primary taste cortex within the bilateral dorsal mid-insula, but no brain region exhibited a consistent preference for any individual taste. -
4-Nervous-System-Structure-PPT.Pdf
Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation and coordination that produce coherency and result in harmonious function. Integration Cellular integration = processes within cells Whole-animal integration = selective combination and processing of sensory, endocrine, and central nervous system (CNS) information in ways that promote harmonious functioning of the whole organism within its environment. ◦ This includes its all its cells, tissues, and organs Integration Nerve cells are specialized for control and coordination. Integration ensures that an animal’s responses are smooth and coordinated rather than clashing or disjointed. Excitable Cells Neurons are a type of excitable cell ◦ Specially adapted to generate an electrical signal Can rapidly alter their membrane potential in response to an incoming signal. Vary in structure and function but use the same basic mechanism to send signals. Neuron Function – Main Points Specialized for processing and conveying information. Information is coded into changes in electrical potential across cell membranes. Neurons use action potentials to transmit these signals across long distances. Neurons allow animals to sense and respond to their environment. Benefits of Neurons Plants (no neurons): Action potentials travel @ 1-3 cm/sec Animals (neurons): Action potentials travel @ 100m/sec or 10,000cm/sec CNS to Muscles Signal Reception Dendrites & Cell Body Signal Integration Axon Hillock Signal Conduction Axon Signal Transmission Axon Terminals Signal Reception Dendrites sense and convert incoming signals into electrical signals by changing membrane potential. Cell Body = routine metabolic functions Signal Integration Incoming signals are conducted to the axon hillock If signal is sufficiently large an electrical signal, or action potential, is initiated. -
Distinct Representations of Basic Taste Qualities in Human Gustatory Cortex
ARTICLE https://doi.org/10.1038/s41467-019-08857-z OPEN Distinct representations of basic taste qualities in human gustatory cortex Junichi Chikazoe1,2, Daniel H. Lee3, Nikolaus Kriegeskorte4 & Adam K. Anderson2 The mammalian tongue contains gustatory receptors tuned to basic taste types, providing an evolutionarily old hedonic compass for what and what not to ingest. Although representation of these distinct taste types is a defining feature of primary gustatory cortex in other animals, fi 1234567890():,; their identi cation has remained elusive in humans, leaving the demarcation of human gustatory cortex unclear. Here we used distributed multivoxel activity patterns to identify regions with patterns of activity differentially sensitive to sweet, salty, bitter, and sour taste qualities. These were found in the insula and overlying operculum, with regions in the anterior and middle insula discriminating all tastes and representing their combinatorial coding. These findings replicated at super-high 7 T field strength using different compounds of sweet and bitter taste types, suggesting taste sensation specificity rather than chemical or receptor specificity. Our results provide evidence of the human gustatory cortex in the insula. 1 Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Aichi 4448585, Japan. 2 Department of Human Development, Cornell University, Ithaca, New York 14850, USA. 3 Integrative Physiology, University of Colorado, Boulder, Colorado 80309, USA. 4 Department -
Hemodynamic Changes in Cortical Sensorimotor Systems Following
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Access Theses and Dissertations from the Education and Human Sciences, College of (CEHS) College of Education and Human Sciences Spring 2016 Hemodynamic Changes in Cortical Sensorimotor Systems Following Hand and Orofacial Motor Tasks and Pulsed Cutaneous Stimulation Austin Oder Rosner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/cehsdiss Part of the Communication Sciences and Disorders Commons Rosner, Austin Oder, "Hemodynamic Changes in Cortical Sensorimotor Systems Following Hand and Orofacial Motor Tasks and Pulsed Cutaneous Stimulation" (2016). Public Access Theses and Dissertations from the College of Education and Human Sciences. 256. http://digitalcommons.unl.edu/cehsdiss/256 This Article is brought to you for free and open access by the Education and Human Sciences, College of (CEHS) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Access Theses and Dissertations from the College of Education and Human Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HEMODYNAMIC CHANGES IN CORTICAL SENSORIMOTOR SYSTEMS FOLLOWING HAND AND OROFACIAL MOTOR TASKS AND PULSED CUTANEOUS STIMULATION by Austin Oder Rosner A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Interdepartmental Area of Human Sciences (Communication Disorders) Under the Supervision of Professor Steven M. Barlow Lincoln, Nebraska January, 2016 HEMODYNAMIC CHANGES IN CORTICAL SENSORIMOTOR SYSTEMS FOLLOWING HAND AND OROFACIAL MOTOR TASKS AND PULSED CUTANEOUS STIMULATION Austin Oder Rosner, Ph.D. -
The Central Nucleus of the Amygdala and Gustatory Cortex Assess Affective Valence During CTA Learning and Expression in Male
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.04.442519; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The central nucleus of the amygdala and gustatory cortex assess affective valence during CTA learning and expression in male and female rats Alyssa Bernanke1, Elizabeth Burnette1, Justine Murphy1, Nathaniel Hernandez1, Sara Zimmerman1, Q. David Walker1, Rylee Wander1, Samantha Sette1, Zackery Reavis1, Reynold Francis1, Christopher Armstrong1, Mary-Louise Risher2, Cynthia Kuhn1 1 Department of Pharmacology and Cancer Biology Duke University Medical Center Durham NC 2 Department of Biomedical Sciences Joan C. Edwards School of Medicine Marshall University Huntington West Virginia bioRxiv preprint doi: https://doi.org/10.1101/2021.05.04.442519; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract This study evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), task performance) and c-fos activation during conditioned taste aversion (CTA) to understand how male and female rats assess the relative danger or safety of a stimulus in learning and performing a task. Females drank more Boost® than males but engaged in comparable aversive behaviors after LiCl treatment. Males produced 55 kHz USVs (indicating positive valence), when anticipating Boost® and inhibited these calls after pairing with LiCl. Females produced 55 kHz USVs based on their estrous cycle but were more likely to make 22 kHz USVs than males (indicating negative valence) after pairing with LiCl. -
Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex
The Journal of Neuroscience, August 9, 2017 • 37(32):7595–7605 • 7595 Systems/Circuits Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex Max L. Fletcher,1 M. Cameron Ogg,1 XLianyi Lu,1 X Robert J. Ogg,2 and John D. Boughter, Jr.1 1Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and 2Department of Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in Ͼ780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region. Key words: gustatory cortex; insular cortex; taste; taste coding Significance Statement Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. -
Insights and Perspectives on Sensory-Motor Integration and Rehabilitation Rochelle Ackerley, Michael Borich, Calogero Maria Oddo, Silvio Ionta
Insights and Perspectives on Sensory-Motor Integration and Rehabilitation Rochelle Ackerley, Michael Borich, Calogero Maria Oddo, Silvio Ionta To cite this version: Rochelle Ackerley, Michael Borich, Calogero Maria Oddo, Silvio Ionta. Insights and Perspectives on Sensory-Motor Integration and Rehabilitation. Multisensory Research, Brill, 2016, 29 (6-7), pp.607- 633. 10.1163/22134808-00002530. hal-01599609 HAL Id: hal-01599609 https://hal.archives-ouvertes.fr/hal-01599609 Submitted on 2 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multisensory Research 29 (2016) 607–633 brill.com/msr Insights and Perspectives on Sensory-Motor Integration and Rehabilitation Rochelle Ackerley 1,2, Michael Borich 3, Calogero Maria Oddo 4 and Silvio Ionta 5,6,∗ 1 Department of Physiology, University of Gothenburg, Göteborg, Sweden 2 Laboratoire Neurosciences Intégratives et Adaptatives (UMR 7260), CNRS — Aix-Marseille Université, Marseille, France 3 Neural Plasticity Research Laboratory, Division of Physical Therapy, Dept of Rehabilitation Medicine, Emory -
Topic 2 – Neuronal Physiology
Index Topic 2 – Neuronal Physiology - Resting membrane potential - The NA+-K+ pump - Channels - Graded potentials - Action potentials - Voltage-gated channels o Voltage-gated Na+ channel o Voltage-gated K+ channel § Repolarisation § Depolarisation - Propagation of action potentials Topic 3 – The Peripheral Nervous System - Efferent division o Somatic nervous system o Autonomic nervous system § Sympathetic nervous sysmte § Parasympathetic nervous system o Cholinergic neurons o Adrenergic neurons o Dominance o Rules about neurons o Neuromuscular junction o Comparison of a synapse and a neuromuscular junction Topic 4 – Skeletal Muscle - General points - Organisation of a muscle - Thick filaments - Thin filaments o Actin o Tropomyosin o Troponin - Transverse tubular system (t-tubules) - Sarcoplasmic reticulum - Contraction of a skeletal muscle fibre - Filament slide switch - Muscle twitches o Amount of fibres o Amount of force o Twitch response o Twitch summation o Tetanic contraction o ATP and skeletal muscle contraction o Direct phosphorylation o Oxidative phosphorylation o Glycolysis Topic 5 – Smooth Muscle - Similarities with skeletal muscle - Differences with skeletal muscle - Structure of smooth muscle - Dense bodies - Smooth muscle contraction ‘switch’ - Relaxation - Multi-unit smooth muscle - Single-unit smooth muscle o Pacemaker potentials o Slow-wave potentials Topic 6 – Gastrointestinal Physiology - Processes o Mobility o Secretion o Digestion o Absorption - Digestive system composition o List of organs o Importance of ‘separation’