Somatosensory System

Total Page:16

File Type:pdf, Size:1020Kb

Somatosensory System Somatosensory System Pain Systems Systems Neuroscience 2019 Daniel J Felleman Figure 9.1 Somatosensory afferents convey information from the skin surface to central circuits Figure 9.2 Transduction in a mechanosensory afferent (a Pacinian corpuscle) Non-encapsulated; with and without accessory structures: Free nerve ending for pain, touch and temperature; accessory- Associated for ending at hair roots and Merkel endings (slowly adapting?). Encapsulated: Pacinian; vibration (very RA), Meissner-fine touch (RA), Ruffini for pressure (SA) Figure 9.3 Receptive fields and two-point discrimination threshold Figure 9.8 Schematic representation of the main mechanosensory pathways Figure 9.9 Proprioceptive pathways for the upper and lower body Figure 9.10 Somatic sensory portions of the thalamus and their cortical targets in postcentral gyrus Figure 9.13 Neurons in the primary somatosensory cortex form functionally distinct columns Figure 9.12 Connections within the somatosensory cortex establish functional hierarchies Figure 10.1 Experimental demonstration that nociception involves specialized neurons (Part 2) Figure 10.2 Pain can be separated into first (sharp) and second (duller, burning) pain Box 10A Capsaicin Figure 10.3 The anterolateral system Figure 10.4 The anterolateral and dorsal column-medial leminiscal systems cross the midline at different sites Figure 10.5 The anterolateral system sends information to different parts of the brainstem/forebrain Affective-motivational aspects of pain depend on projections to RF, SC, central gray, hypothalamus, amygdala, and midline thalamic n. Figure 10.6 Pathways mediating discriminative aspects of pain & temperature for the body & face Box 10C A Dorsal Column Pathway for Visceral Pain Sensory discriminative aspects of pain (location, intensity and quality) depend on information relayed to cortex via VPL/VPM Figure 10.7 Inflammatory response to tissue damage Figure 10.8 Descending systems that modulate the transmission of ascending pain signals Pain modulation: Electrical stimulation of multiple brainstem sites can lead to analgesia. Gate control theory-via parallel mechano-receptor inputs (Melzak and Wall) Endogenous opiods; enkephalins, endorphins, and dysnorphins—in the peri-aquiducatal gray and enkephalins and dysnorphins in ventral medulla and spinal cord .
Recommended publications
  • Somatosensory Systems
    Somatosensory Systems Sue Keirstead, Ph.D. Assistant Professor Dept. of Integrative Biology and Physiology Stem Cell Institute E-mail: [email protected] Tel: 612 626 2290 Class 9: Somatosensory System (p. 292-306) 1. Describe the 3 main types of somatic sensations: 1. tactile: light touch, deep pressure, vibration, cold, hot, etc., 2. pain, 3. Proprioception. 2. List the types of sensory receptors that are found in the skin (Figure 9.11) and explain what determines the optimum type of stimulus that will activate each. 3. Describe the two different modality-specific ascending somatosensory pathways and note which modalities are carried in each (Figure 9.10 and 9.13). 4. Describe how it is possible for us to differentiate between stimuli of different modalities in the same body part (i.e. fingertip). Consider this at the level of 1) the sensory receptors and 2) the neurons onto which they synapse in the ascending sensory systems. 5. Explain how one might determine the location of a spinal cord injury based on the modality of sensation that is lost and the region of the body (both the side of the body and body part) where sensation is lost (Figure 9.18). 6. Describe how incoming sensory inputs from primary sensory axons can be modified at the level of the spinal cord and relate this to the mechanism of action of some common pain medications (Figure 9-18). 7. Describe the homunculus and explain the significance of the size of the region of the somatosensory cortex devoted to a particular body part. Cerebral cortex Interneuron Thalamus Interneuron 4 Integration of sensory Stimulus input in the CNS 1 Stimulation Sensory Axon of sensory of sensory receptor neuron receptor Graded potential Action potentials 2 Transduction 3 Generation of of the stimulus action potentials Copyright © 2016 by John Wiley & Sons, Inc.
    [Show full text]
  • Pacinian Corpuscle Neuroma: a Rare Case Report with Review of Literature
    vv ISSN: 2641-3116 DOI: https://dx.doi.org/10.17352/ojor CLINICAL GROUP Received: 03 June, 2020 Case Report Accepted: 26 June, 2020 Published: 27 June, 2020 *Corresponding author: Sujit Kumar Singh, Junior Pacinian corpuscle neuroma: A Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak, India, Tel: +91-9477943631; E-mail: rare case report with review of ORCID: https://orcid.org/0000-0002-2285-6905 Keywords: Pacinian corpuscle; Neuroma; Pacinian Literature corpuscle Sujit Kumar Singh1*, Umesh Yadav2, Ajay Sheoran2, RC https://www.peertechz.com Siwach3, Ashish Devgan3, Kshitish Chandra Behera4, Amandeep Verma1, Karunesh Ranjan1 and Surinder Jaiswal5 1Junior Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak, India 2Assistant Professor, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 3Senior Professor, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 4Senior Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 5Junior Resident, Department of Orthopaedics, Pt. B.D. Sharma PGIMS, Rohtak Abstract The authors discuss an interesting case of a Pacinian corpuscle neuroma in the fi nger of a young woman who presented with severe digital pain. The clinical signs were very prominent. The patient had complete pain relief following excision of the tumor. Pacinian corpuscle neuromas are rare, with only about few cases reported in the literature. The histology, presenting features and associated conditions are discussed in detail. In addition to a neuroma or glomus tumor, Pacinian corpuscle hyperplasia should be considered in the differential diagnosis of digital or palmar pain of unknown etiology. Introduction Neural tumours composed exclusively of Pacinian corpuscles or showing focal Pacinian differentiation are extremely rare and have only occasionally been reported in the literature.
    [Show full text]
  • Pacinian Corpuscle Tumor
    International Journal of Medical and Health Research International Journal of Medical and Health Research ISSN: 2454-9142 Received: 10-08-2019; Accepted: 12-09-2019 www.medicalsciencejournal.com Volume 5; Issue 11; November 2019; Page No. 48-51 Pacinian corpuscle tumor Dr. Pathik Shah1, Dr. Hiten Kareliya2, Dr. Salome3, Dr. Tushar Toprani4 1 Department of Internal Medicine, Indian Oil Corporation limited, Vadodara, Gujarat, India 2 Consultant Infectious diseases, Prime Hospital, Vadodara, Gujarat, India 3 Senior Histopathologist, Toprani Lab, Vadodara, Gujarat, India 4 Senior Pathologist, Toprani Lab, Vadodara, Gujarat, India Abstract The authors discuss an interesting case of a Pacinian corpuscle neuroma in the finger of a young woman who presented with severe digital pain. The pain was initially attributed to pus collection in the interphalangeal joint of the thumb. The clinical signs were very subtle. The patient had complete pain relief following excision of the tumor. Pacinian corpuscle neuromas are rare, with only about few cases reported in the literature. The histology, presenting features and associated conditions are discussed in detail. In addition to a neuroma or glomus tumor, Pacinian corpuscle hyperplasia should be considered in the differential diagnosis of digital or palmar pain of unknown etiology. Keywords: Pacinian cell neuroma, Pacinian corpuscle neuroma, Painful hand lesions 1. Introduction Schematic diagram of the microscopic structure of a Pacinian corpuscles are mechanoreceptors found in human Pacinian corpuscle showing a single unmyelinated nerve and other animals. They are distributed in the dermis from fiber surrounded by connective tissue lamellae. The part of the fingers and palm of the hand, the conjunctiva, near the nerve outside the capsule is myelinated joints, in the mesenteries, branching blood vessels, penis, urethra, clitoris, parietal peritoneum and loose connective tissue.
    [Show full text]
  • Somatosensory Function in Speech Perception
    Somatosensory function in speech perception Takayuki Itoa, Mark Tiedea,b, and David J. Ostrya,c,1 aHaskins Laboratories, 300 George Street, New Haven, CT 06511; bResearch Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139; and cDepartment of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, Canada H3A 1B1 Edited by Fernando Nottebohm, The Rockefeller University, Millbrook, NY, and approved December 4, 2008 (received for review October 7, 2008) Somatosensory signals from the facial skin and muscles of the vocal taken from a computer-generated continuum between the words tract provide a rich source of sensory input in speech production. head and had. We found that perception of these speech sounds We show here that the somatosensory system is also involved in varied in a systematic manner depending on the direction of skin the perception of speech. We use a robotic device to create stretch. The presence of any perceptual change at all depended patterns of facial skin deformation that would normally accom- on the temporal pattern of the stretch, such that perceptual pany speech production. We find that when we stretch the facial change was present only when the timing of skin stretch was skin while people listen to words, it alters the sounds they hear. comparable to that which occurs during speech production. The The systematic perceptual variation we observe in conjunction findings are consistent with the hypothesis that the somatosen- with speech-like patterns of skin stretch indicates that somatosen- sory system is involved in the perceptual processing of speech. sory inputs affect the neural processing of speech sounds and The findings underscore the idea that there is a broad nonau- shows the involvement of the somatosensory system in the per- ditory basis to speech perception (17–21).
    [Show full text]
  • Fine Structure of Eimer's Organ in the Coast Mole (Scapanus Orarius)
    THE ANATOMICAL RECORD 290:437–448 (2007) Fine Structure of Eimer’s Organ in the Coast Mole (Scapanus orarius) PAUL D. MARASCO,1 PAMELA R. TSURUDA,2 DIANA M. BAUTISTA,2 3 AND KENNETH C. CATANIA * 1Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 2Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 3Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee ABSTRACT Eimer’s organ is a small, densely innervated sensory structure found on the glabrous rhinarium of most talpid moles. This structure consists of an epidermal papilla containing a central circular column of cells as- sociated with intraepidermal free nerve endings, Merkel cell neurite complexes, and lamellated corpuscles. The free nerve endings within the central cell column form a ring invested in the margins of the column, surrounding 1–2 fibers that pass through the center of the column. A group of small-diameter nociceptive free nerve endings that are immuno- reactive for substance P surrounds this central ring of larger-diameter free nerve endings. Transmission electron microscopy revealed a high concentration of tonofibrils in the epidermal cells of the central column, suggesting they are more rigid than the surrounding keratinocytes and may play a mechanical role in transducing stimuli to the different recep- tor terminals. The intraepidermal free nerve endings within the central column begin to degrade 15 mm from the base of the stratum corneum and do not appear to be active within the keratinized outer layer. The pe- ripheral free nerve endings are structurally distinct from their counter- parts in the central column and immunocytochemical double labeling with myelin basic protein and substance P indicates these afferents are unmyelinated.
    [Show full text]
  • Mechanisms of Mechanotransduction in the Pacinian Corpuscle
    1 Mechanisms of Mechanotransduction in the Pacinian Corpuscle Submitted by Svetlana Pitts-Yushchenko to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, July 2013 The thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ………………………………………………………………… 2 3 Abstract Touch perception is important in most living organisms and extremely sensitive detection systems have evolved to meet this need. Pacinian corpuscles (PCs) are primary mechanoreceptors. In the human, they are found in the skin (where they act as touch receptors), in the joints, in muscles and in many organs (where they act as motion sensors). The purpose of the work described in this thesis is to investigate how the performance of the PC is achieved, with reference to structure, mechanical properties and possible transduction mechanisms. PCs were obtained from the equine hoof and their distribution and clustering were investigated. Corpuscles were located in the frog area of the hoof (the digital cushion); they were found to be surrounded by adipose tissue and often closely associated with blood vessels. The physiological implications of these observations are discussed. The structure and composition of corpuscles was investigated using confocal microscopy with histological stains for collagen, proteoglycans and lipids. Nonlinear microscopy was also used to investigate the distribution of collagen (by second- harmonic generation), elastin (by intrinsic two-photon fluorescence) and membrane 4 lipids (by coherent Raman imaging).
    [Show full text]
  • Sensory Receptors A17 (1)
    SENSORY RECEPTORS A17 (1) Sensory Receptors Last updated: April 20, 2019 Sensory receptors - transducers that convert various forms of energy in environment into action potentials in neurons. sensory receptors may be: a) neurons (distal tip of peripheral axon of sensory neuron) – e.g. in skin receptors. b) specialized cells (that release neurotransmitter and generate action potentials in neurons) – e.g. in complex sense organs (vision, hearing, equilibrium, taste). sensory receptor is often associated with nonneural cells that surround it, forming SENSE ORGAN. to stimulate receptor, stimulus must first pass through intervening tissues (stimulus accession). each receptor is adapted to respond to one particular form of energy at much lower threshold than other receptors respond to this form of energy. adequate (s. appropriate) stimulus - form of energy to which receptor is most sensitive; receptors also can respond to other energy forms, but at much higher thresholds (e.g. adequate stimulus for eye is light; eyeball rubbing will stimulate rods and cones to produce light sensation, but threshold is much higher than in skin pressure receptors). when information about stimulus reaches CNS, it produces: a) reflex response b) conscious sensation c) behavior alteration SENSORY MODALITIES Sensory Modality Receptor Sense Organ CONSCIOUS SENSATIONS Vision Rods & cones Eye Hearing Hair cells Ear (organ of Corti) Smell Olfactory neurons Olfactory mucous membrane Taste Taste receptor cells Taste bud Rotational acceleration Hair cells Ear (semicircular
    [Show full text]
  • Hemodynamic Changes in Cortical Sensorimotor Systems Following
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Access Theses and Dissertations from the Education and Human Sciences, College of (CEHS) College of Education and Human Sciences Spring 2016 Hemodynamic Changes in Cortical Sensorimotor Systems Following Hand and Orofacial Motor Tasks and Pulsed Cutaneous Stimulation Austin Oder Rosner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/cehsdiss Part of the Communication Sciences and Disorders Commons Rosner, Austin Oder, "Hemodynamic Changes in Cortical Sensorimotor Systems Following Hand and Orofacial Motor Tasks and Pulsed Cutaneous Stimulation" (2016). Public Access Theses and Dissertations from the College of Education and Human Sciences. 256. http://digitalcommons.unl.edu/cehsdiss/256 This Article is brought to you for free and open access by the Education and Human Sciences, College of (CEHS) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Access Theses and Dissertations from the College of Education and Human Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HEMODYNAMIC CHANGES IN CORTICAL SENSORIMOTOR SYSTEMS FOLLOWING HAND AND OROFACIAL MOTOR TASKS AND PULSED CUTANEOUS STIMULATION by Austin Oder Rosner A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Interdepartmental Area of Human Sciences (Communication Disorders) Under the Supervision of Professor Steven M. Barlow Lincoln, Nebraska January, 2016 HEMODYNAMIC CHANGES IN CORTICAL SENSORIMOTOR SYSTEMS FOLLOWING HAND AND OROFACIAL MOTOR TASKS AND PULSED CUTANEOUS STIMULATION Austin Oder Rosner, Ph.D.
    [Show full text]
  • A Theoretical and Experimental Investigation Into the Distribution, Morphology and Function of Pacinian Corpuscles
    A theoretical and experimental investigation into the distribution, morphology and function of pacinian corpuscles. Submitted by Joanne Danielle Dale to the University of Exeter as a dissertation for Master of Philosophy in Physics, October 2014. This dissertation is available for Library use on the understanding that it is copyright material and that no quotation from the dissertation may be published without proper acknowledgement. I certify that all material in this dissertation which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract The distribution, morphology and function of the pacinian corpuscle was examined. The distribution in rat feet was recorded using both Magnetic Resonance Imaging (MRI) and dissection. The mechanical properties of the corpuscle were investigated using a theoretical model based upon previous work by (Loewenstein & Skalak, 1966). The model was used to examine how the corpuscle’s structure affects its function in healthy and diseased states. Distribution data gathered by dissection revealed the majority of corpuscles were restricted to the adipose tissue of each foot pad. Densest concentrations were in the rear foot pads. The remainder were located in the digits and in close proximity of bone via the interosseous membrane and wrist ligaments. Localisation near capillaries was common. MRI was not invasive and detected a greater number of corpuscles but held limitations in its ability to separate corpuscles in close proximity. Dissection was invasive and showed a lower number of corpuscles but greater confidence could be contributed to the correct identification of each corpuscle.
    [Show full text]
  • Insights and Perspectives on Sensory-Motor Integration and Rehabilitation Rochelle Ackerley, Michael Borich, Calogero Maria Oddo, Silvio Ionta
    Insights and Perspectives on Sensory-Motor Integration and Rehabilitation Rochelle Ackerley, Michael Borich, Calogero Maria Oddo, Silvio Ionta To cite this version: Rochelle Ackerley, Michael Borich, Calogero Maria Oddo, Silvio Ionta. Insights and Perspectives on Sensory-Motor Integration and Rehabilitation. Multisensory Research, Brill, 2016, 29 (6-7), pp.607- 633. 10.1163/22134808-00002530. hal-01599609 HAL Id: hal-01599609 https://hal.archives-ouvertes.fr/hal-01599609 Submitted on 2 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multisensory Research 29 (2016) 607–633 brill.com/msr Insights and Perspectives on Sensory-Motor Integration and Rehabilitation Rochelle Ackerley 1,2, Michael Borich 3, Calogero Maria Oddo 4 and Silvio Ionta 5,6,∗ 1 Department of Physiology, University of Gothenburg, Göteborg, Sweden 2 Laboratoire Neurosciences Intégratives et Adaptatives (UMR 7260), CNRS — Aix-Marseille Université, Marseille, France 3 Neural Plasticity Research Laboratory, Division of Physical Therapy, Dept of Rehabilitation Medicine, Emory
    [Show full text]
  • Miracle Berry’ Demo ‘Miracle Berry’ Demo What Are Miracle Berries?
    Applied Neuroscience Columbia Science Honors Program Fall 2016 Sensory Systems and Neural Circuits, Part Two Last week’s class Sensory systems and neural circuits 1. Introduction to sensory systems 2. Visual system 3. Auditory system 4. Introduction to neural circuits How do we take cues from our environment and make sense of the world around us? Sensory systems How do sensory systems work? Neurons in sensory regions of the brain respond to stimuli by firing action potentials after receiving a stimulus. Each sensory system follows a specific plan: 1. Reception 2. Transduction 3. Coding Today’s class Objective: Sensory Systems and Neural Circuits, Part Two Agenda: Sensory Systems Gustatory system (taste) Olfactory system (odor) Demo 1: Jellybean test Somatosensory system (touch and pain) Demo 2: Flavor tripping with ‘Miracle Berries’ Sensory systems What are different types of senses? Hearing Vision Smell Touch (olfaction) Pain Humans Taste Temperature (gustation) Vestibular Autonomic Senses Senses Proprioception Chemical senses Sensory systems associated with the nose and mouth (olfaction and taste) detect chemicals in the environment. Gustatory system: detects ingested, primarily water-soluble, molecules called tastants Olfactory system: detects airborne molecules called odors These systems rely on receptors in the nasal cavity, mouth or face that interact with the relevant molecules and generate action potentials. Gustatory System Objective: Understand how the gustatory system works Agenda: 1. Morphology of cells 2. Gustatory pathway v Flavor tripping with ‘Miracle Berries’ (later in the class) Gustatory System Morphology of taste buds and cell types: • Taste buds are located on papillae and are distributed across the tongue • They are also found on the oral mucosa of the palate and epiglottis • Taste buds contain 80 cells arranged around a central taste pore.
    [Show full text]
  • Sensory Training: Translating Research to Clinical Practice & Home Program
    Sensory Training: translating research to clinical practice & home program Nel Ledesma, MHS, OTR/L Rehabilitation Services Beaumont Health System – Troy Campus October 10, 2019 Course Objectives • Discuss the prevalence of sensory impairment following a stroke • Describe the stroke survivors’ experiences of sensory impairment in the upper limb and impact with daily life • Review sensory assessments and outcome measures • Review the adaptive / compensatory strategies for sensory impairment • Discuss the passive and active sensory training – Discuss the recommended parameters, electrodes placements and dosage for passive sensory training using TENS – Discuss Thermal Stimulation to improve thermal awareness – Identify sample objects for active sensory training • Describe sensory training home program • Present case studies 2 Stroke Statistics • Stroke kills about 140,000 Americans each year—that’s 1 out of every 20 deaths.1 • Someone in the United States has a stroke every 40 seconds. Every 4 minutes, someone dies of stroke.2 • Every year, more than 795,000 people in the United States have a stroke. About 610,000 of these are first or new strokes.2 • About 185,00 strokes—nearly 1 of 4—are in people who have had a previous stroke.2 • About 87% of all strokes are ischemic strokes, in which blood flow to the brain is blocked.2 • Economic impact was estimated at $34 billion each year.2 This total includes the cost of health care services, medicines to treat stroke, and missed days of work. 3 Post stroke dysfunction • Stroke is a leading cause
    [Show full text]