Cutaneous Mechanoreceptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Somatosensory Systems
Somatosensory Systems Sue Keirstead, Ph.D. Assistant Professor Dept. of Integrative Biology and Physiology Stem Cell Institute E-mail: [email protected] Tel: 612 626 2290 Class 9: Somatosensory System (p. 292-306) 1. Describe the 3 main types of somatic sensations: 1. tactile: light touch, deep pressure, vibration, cold, hot, etc., 2. pain, 3. Proprioception. 2. List the types of sensory receptors that are found in the skin (Figure 9.11) and explain what determines the optimum type of stimulus that will activate each. 3. Describe the two different modality-specific ascending somatosensory pathways and note which modalities are carried in each (Figure 9.10 and 9.13). 4. Describe how it is possible for us to differentiate between stimuli of different modalities in the same body part (i.e. fingertip). Consider this at the level of 1) the sensory receptors and 2) the neurons onto which they synapse in the ascending sensory systems. 5. Explain how one might determine the location of a spinal cord injury based on the modality of sensation that is lost and the region of the body (both the side of the body and body part) where sensation is lost (Figure 9.18). 6. Describe how incoming sensory inputs from primary sensory axons can be modified at the level of the spinal cord and relate this to the mechanism of action of some common pain medications (Figure 9-18). 7. Describe the homunculus and explain the significance of the size of the region of the somatosensory cortex devoted to a particular body part. Cerebral cortex Interneuron Thalamus Interneuron 4 Integration of sensory Stimulus input in the CNS 1 Stimulation Sensory Axon of sensory of sensory receptor neuron receptor Graded potential Action potentials 2 Transduction 3 Generation of of the stimulus action potentials Copyright © 2016 by John Wiley & Sons, Inc. -
On the Existence of Mechanoreceptors Within the Neurovascular Unit of the Rodent and Rabbit Brain
bioRxiv preprint doi: https://doi.org/10.1101/480921; this version posted November 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. On the existence of mechanoreceptors within the neurovascular unit of the rodent and rabbit brain Jorge Larriva-Sahd, Martha León-Olea (*), Víctor Vargas-Barroso (**), Alfredo Varela-Echavarría and Luis Concha Departments of Developmental Biology and Physiology, Instituto de Neurobiología. Campus Juriquilla. Universidad Nacional Autónoma de México. Boulevard Universitario 3001, Juriquilla, Querétaro, CP 76230, México. (*) Department of Functional Neuromorphology, Instituto Mexicano de Psiquiatría “Ramón de la Fuente Muñiz” Av México Xochimilco 101, Delegación Tlalpan CP14370, México DF, México. (**) Present address: Institute of Science and Technology Austria (IST), Am Campus 1, 3400, Klosterneuburg, Austria.Correspondence: Correspondence: Jorge Larriva-Sahd e-mail: [email protected] Telephone: 5256-234030 Orcid ID: 0000-0002-7254-0773 bioRxiv preprint doi: https://doi.org/10.1101/480921; this version posted November 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract. We describe a set of perivascular interneurons (PINs) originating a series of fibro-vesicular complexes (FVCs) throughout the gray matter of the adult rabbit and rat brain. PINs-FVCs are ubiquitous throughout the brain vasculature as defined in Golgi-impregnated specimens. -
Chemoreception
Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath. -
Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder -
The Roles and Functions of Cutaneous Mechanoreceptors Kenneth O Johnson
455 The roles and functions of cutaneous mechanoreceptors Kenneth O Johnson Combined psychophysical and neurophysiological research has nerve ending that is sensitive to deformation in the resulted in a relatively complete picture of the neural mechanisms nanometer range. The layers function as a series of of tactile perception. The results support the idea that each of the mechanical filters to protect the extremely sensitive recep- four mechanoreceptive afferent systems innervating the hand tor from the very large, low-frequency stresses and strains serves a distinctly different perceptual function, and that tactile of ordinary manual labor. The Ruffini corpuscle, which is perception can be understood as the sum of these functions. located in the connective tissue of the dermis, is a rela- Furthermore, the receptors in each of those systems seem to be tively large spindle shaped structure tied into the local specialized for their assigned perceptual function. collagen matrix. It is, in this way, similar to the Golgi ten- don organ in muscle. Its association with connective tissue Addresses makes it selectively sensitive to skin stretch. Each of these Zanvyl Krieger Mind/Brain Institute, 338 Krieger Hall, receptor types and its role in perception is discussed below. The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2689, USA; e-mail: [email protected] During three decades of neurophysiological and combined Current Opinion in Neurobiology 2001, 11:455–461 psychophysical and neurophysiological studies, evidence has accumulated that links each of these afferent types to 0959-4388/01/$ — see front matter © 2001 Elsevier Science Ltd. All rights reserved. a distinctly different perceptual function and, furthermore, that shows that the receptors innervated by these afferents Abbreviations are specialized for their assigned functions. -
What Is Proprioception?
1 Talking Matters www.talkingmatters.com.au Ph: 8255 7137 Helping your child to reach their potential Developing body awareness or proprioception Proprioception is a person's awareness of their own body in space. This sense allows us to keep track of where our body parts are without having to look at them. While you are sitting and reading this you can reach down and scratch your knee under the table because your body knows where both your knee and your hand are without having to look at them. Without this sense this simple action would be much more difficult. Proprioception works through an awareness of how our muscles are stretching and adjusts the contraction of our muscles as needed. It works with "kinesthesia" a sense that tells us how our joints are moving and the "vestibular system" in our inner ear which tells us about balance and gravity. All these help us to make adjustments in our joints and muscles to help us move our body and keep our balance. It sounds complex yet we do it all the time without even being aware of it. Proprioception works when sensors in the muscles tell the brain about muscle stretch, tension and pressure. The brain needs information from many sensors or "muscle spindles" to control movements. Muscles used for fine, small movements such as our fingers have many spindles, while those used for larger movements have less. Arms and legs also have many spindles so we can stay upright and keep our balance. The brain also gets information from tendons, joints and ligaments. -
Pacinian Corpuscle Neuroma: a Rare Case Report with Review of Literature
vv ISSN: 2641-3116 DOI: https://dx.doi.org/10.17352/ojor CLINICAL GROUP Received: 03 June, 2020 Case Report Accepted: 26 June, 2020 Published: 27 June, 2020 *Corresponding author: Sujit Kumar Singh, Junior Pacinian corpuscle neuroma: A Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak, India, Tel: +91-9477943631; E-mail: rare case report with review of ORCID: https://orcid.org/0000-0002-2285-6905 Keywords: Pacinian corpuscle; Neuroma; Pacinian Literature corpuscle Sujit Kumar Singh1*, Umesh Yadav2, Ajay Sheoran2, RC https://www.peertechz.com Siwach3, Ashish Devgan3, Kshitish Chandra Behera4, Amandeep Verma1, Karunesh Ranjan1 and Surinder Jaiswal5 1Junior Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak, India 2Assistant Professor, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 3Senior Professor, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 4Senior Resident, Department of Orthopedics, Pt. BD Sharma PGIMS, Rohtak 5Junior Resident, Department of Orthopaedics, Pt. B.D. Sharma PGIMS, Rohtak Abstract The authors discuss an interesting case of a Pacinian corpuscle neuroma in the fi nger of a young woman who presented with severe digital pain. The clinical signs were very prominent. The patient had complete pain relief following excision of the tumor. Pacinian corpuscle neuromas are rare, with only about few cases reported in the literature. The histology, presenting features and associated conditions are discussed in detail. In addition to a neuroma or glomus tumor, Pacinian corpuscle hyperplasia should be considered in the differential diagnosis of digital or palmar pain of unknown etiology. Introduction Neural tumours composed exclusively of Pacinian corpuscles or showing focal Pacinian differentiation are extremely rare and have only occasionally been reported in the literature. -
Proprioception As a Basis for Individual Differences Liudmila N
Psychology in Russia: State of the Art Russian Lomonosov Psychological Moscow State Volume 6, Issue 3, 2013 Society University Proprioception as a basis for individual differences Liudmila N. Liutsko Mira y Lopez Laboratory, University of Barcelona, Barcelona, Spain In this chapter the author summarises the descriptions of proprioceptive sense from dif- ferent perspectives. The importance of proprioceptive sense has been shown in devel- opmental psychology, in both the earlier and later stages of individuum formation. The author emphasises in this chapter the role of proprioception as a basis of personality and the individual differences construct. The importance of assessing behaviour at multiple levels has been pointed out by experiments of classic and modern researchers that should include not only verbal tests that would be more important for conscious mental descrip- tion, but also techniques that could assess other behavioural characteristics, including automatic unconscious and pre-reflexive behaviour. The author also describes the effects of altered proprioception in humans, such as the Pinocchio effect, and other spatial per- ception distortions. In this chapter the importance of proprioception in acquiring new skills (embodied knowledge) as automatic and conditioned reflexive behaviour has also been highlighted. Finally, the complete picture of the individuum has been presented as a multi-layered level of a body-mind union approach. Key words: proprioception, individual differences, multi-layered personality, embodied knowledge, automatic movements. The aspects of things that are most important for us are hidden because of their simplicity and familiarity. Wittgenstein (cited in Sacks, 1985) In the cognitive sciences, the most challenging phenomena are often the ones we take for granted in our everyday lives. -
Sensory Receptors
Laboratory Worksheet Exercise: Sensory Receptors Sense Organs - Sensory Receptors A sensory receptor is a specialized ending of a sensory neuron that detects a specific stimulus. Receptors can range from simple nerve endings of a sensory neuron (e.g., pain, touch), to a complex combination of nervous, epithelial, connective and muscular tissue (e.g., the eyes). Axon Synaptic info. Sensory end bulbs Receptors Figure 1. Diagram of a sensory neuron with sensory information being detected by sensory receptors located at the incoming end of the neuron. This information travels along the axon and delivers its signal to the central nervous system (CNS) via the synaptic end bulbs with the release of neurotransmitters. The function of a sensory receptor is to act as a transducer. Transducers convert one form of energy into another. In the human body, sensory receptors convert stimulus energy into electrical impulses called action potentials. The frequency and duration of action potential firing gives meaning to the information coming in from a specific receptor. The nervous system helps to maintain homeostasis in the body by monitoring the internal and external environments of the body using receptors to achieve this. Sensations are things in our environment that we detect with our 5 senses. The 5 basic senses are: Sight Hearing Touch Taste Smell An adequate stimulus is a particular form of energy to which a receptor is most responsive. For example, thermoreceptors are more sensitive to temperature than to pressure. The threshold of a receptor is the minimum stimulus required to activate that receptor. Information about Receptor Transmission Sensory receptors transmit four kinds of information - modality, location, intensity and duration. -
Pacinian Corpuscle Tumor
International Journal of Medical and Health Research International Journal of Medical and Health Research ISSN: 2454-9142 Received: 10-08-2019; Accepted: 12-09-2019 www.medicalsciencejournal.com Volume 5; Issue 11; November 2019; Page No. 48-51 Pacinian corpuscle tumor Dr. Pathik Shah1, Dr. Hiten Kareliya2, Dr. Salome3, Dr. Tushar Toprani4 1 Department of Internal Medicine, Indian Oil Corporation limited, Vadodara, Gujarat, India 2 Consultant Infectious diseases, Prime Hospital, Vadodara, Gujarat, India 3 Senior Histopathologist, Toprani Lab, Vadodara, Gujarat, India 4 Senior Pathologist, Toprani Lab, Vadodara, Gujarat, India Abstract The authors discuss an interesting case of a Pacinian corpuscle neuroma in the finger of a young woman who presented with severe digital pain. The pain was initially attributed to pus collection in the interphalangeal joint of the thumb. The clinical signs were very subtle. The patient had complete pain relief following excision of the tumor. Pacinian corpuscle neuromas are rare, with only about few cases reported in the literature. The histology, presenting features and associated conditions are discussed in detail. In addition to a neuroma or glomus tumor, Pacinian corpuscle hyperplasia should be considered in the differential diagnosis of digital or palmar pain of unknown etiology. Keywords: Pacinian cell neuroma, Pacinian corpuscle neuroma, Painful hand lesions 1. Introduction Schematic diagram of the microscopic structure of a Pacinian corpuscles are mechanoreceptors found in human Pacinian corpuscle showing a single unmyelinated nerve and other animals. They are distributed in the dermis from fiber surrounded by connective tissue lamellae. The part of the fingers and palm of the hand, the conjunctiva, near the nerve outside the capsule is myelinated joints, in the mesenteries, branching blood vessels, penis, urethra, clitoris, parietal peritoneum and loose connective tissue. -
Fine Structure of Eimer's Organ in the Coast Mole (Scapanus Orarius)
THE ANATOMICAL RECORD 290:437–448 (2007) Fine Structure of Eimer’s Organ in the Coast Mole (Scapanus orarius) PAUL D. MARASCO,1 PAMELA R. TSURUDA,2 DIANA M. BAUTISTA,2 3 AND KENNETH C. CATANIA * 1Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 2Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 3Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee ABSTRACT Eimer’s organ is a small, densely innervated sensory structure found on the glabrous rhinarium of most talpid moles. This structure consists of an epidermal papilla containing a central circular column of cells as- sociated with intraepidermal free nerve endings, Merkel cell neurite complexes, and lamellated corpuscles. The free nerve endings within the central cell column form a ring invested in the margins of the column, surrounding 1–2 fibers that pass through the center of the column. A group of small-diameter nociceptive free nerve endings that are immuno- reactive for substance P surrounds this central ring of larger-diameter free nerve endings. Transmission electron microscopy revealed a high concentration of tonofibrils in the epidermal cells of the central column, suggesting they are more rigid than the surrounding keratinocytes and may play a mechanical role in transducing stimuli to the different recep- tor terminals. The intraepidermal free nerve endings within the central column begin to degrade 15 mm from the base of the stratum corneum and do not appear to be active within the keratinized outer layer. The pe- ripheral free nerve endings are structurally distinct from their counter- parts in the central column and immunocytochemical double labeling with myelin basic protein and substance P indicates these afferents are unmyelinated. -
Mechanisms of Mechanotransduction in the Pacinian Corpuscle
1 Mechanisms of Mechanotransduction in the Pacinian Corpuscle Submitted by Svetlana Pitts-Yushchenko to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, July 2013 The thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ………………………………………………………………… 2 3 Abstract Touch perception is important in most living organisms and extremely sensitive detection systems have evolved to meet this need. Pacinian corpuscles (PCs) are primary mechanoreceptors. In the human, they are found in the skin (where they act as touch receptors), in the joints, in muscles and in many organs (where they act as motion sensors). The purpose of the work described in this thesis is to investigate how the performance of the PC is achieved, with reference to structure, mechanical properties and possible transduction mechanisms. PCs were obtained from the equine hoof and their distribution and clustering were investigated. Corpuscles were located in the frog area of the hoof (the digital cushion); they were found to be surrounded by adipose tissue and often closely associated with blood vessels. The physiological implications of these observations are discussed. The structure and composition of corpuscles was investigated using confocal microscopy with histological stains for collagen, proteoglycans and lipids. Nonlinear microscopy was also used to investigate the distribution of collagen (by second- harmonic generation), elastin (by intrinsic two-photon fluorescence) and membrane 4 lipids (by coherent Raman imaging).