Taste Quality Representation in the Human Brain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Precisely-Timed Inhibition of Gustatory Cortex On
1 Impact of precisely-timed inhibition of gustatory cortex 2 on taste behavior depends on single-trial ensemble 3 dynamics ∗1 2 y3 4 Narendra Mukherjee , Joseph Wachukta , and Donald B Katz 1,2,3 5 Program in Neuroscience, Brandeis University 1,2,3 6 Volen National Center for Complex Systems, Brandeis University 3 7 Department Of Psychology, Brandeis University 8 Abstract 9 Sensation and action are necessarily coupled during stimulus perception – while tasting, 10 for instance, perception happens while an animal decides to expel or swallow the substance 11 in the mouth (the former via a behavior known as “gaping”). Taste responses in the ro- 12 dent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate 13 epochs that culminate in the emergence of action-related firing. Population analyses re- 14 veal this emergence to be a sudden, coherent and variably-timed ensemble transition that 15 reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives 16 gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly 17 delayed gaping, but only when they preceded the action-related transition - thus, the same 18 perturbation impacted behavior or not, depending on the transition latency in that partic- 19 ular trial. Our results suggest a distributed attractor network model of taste processing, 20 and a dynamical role for cortex in driving motor behavior. ∗[email protected] [email protected] 1 21 1 Introduction 22 One of the primary purposes of sensory processing is to drive action, such that the source 23 of sensory information is either acquired or avoided (in the process generating new sensory 24 input, Prinz(1997), Wolpert and Kawato(1998), Wolpert and Ghahramani(2000)). -
Food, Food Chemistry and Gustatory Sense
Food, Food Chemistry and Gustatory Sense COOH N H María González Esguevillas MacMillan Group Meeting May 12th, 2020 Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue country social act culture age pleasure election It is fundamental for our life Food and Food Chemistry Introduction Concepts Food any nourishing substance eaten or drunk to sustain life, provide energy and promote growth any substance containing nutrients that can be ingested by a living organism and metabolized into energy and body tissue OH O HO O O HO OH O O O limonin OH O O orange taste HO O O O 5-caffeoylquinic acid Coffee taste OH H iPr N O Me O O 2-decanal Capsaicinoids Coriander taste Chilli burning sensation Astray, G. EJEAFChe. 2007, 6, 1742-1763 Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques de Man, J. M. Principles of Food Chemistry 1999, Springer Science Fennema, O. R. Food Chemistry. 1985, 2nd edition New York: Marcel Dekker, Inc Food and Food Chemistry Introduction Concepts Food Chemistry the study of chemical processes and interactions of all biological and non-biological components of foods biological substances areas food processing techniques carbo- hydrates water minerals lipids flavors vitamins protein food enzymes colors additive Fennema, O. R. Food Chemistry. -
TEST YOUR TASTE Featuring a “Class Experiment” and “Try Your Own Experiment” TEACHER GUIDE
NEUROSCIENCE FOR KIDS http://faculty.washington.edu/chudler/neurok.html OUR CHEMICAL SENSES: TASTE TEST YOUR TASTE Featuring a “Class Experiment” and “Try Your Own Experiment” TEACHER GUIDE WHAT STUDENTS WILL DO · predict and then determine their ability to identify food samples by taste alone (holding the nose) and then by taste plus smell · collect all class data on identifying food samples and calculate the percentage of correct and incorrect answers for each method (with and without smell) · list factors that affect our ability to identify substances by taste · discuss the functions of the sense of taste · draw a simple diagram of the neural “circuitry” from the taste receptors to the brain · learn how to design experiments that include asking specific questions, defining control conditions, and changing one variable at a time · devise their own experiments to extend the study of the sense of taste SUGGESTED TIMES for these activities: 45 minutes for discussing background concepts and introducing the activities; 45 minutes for the “Class Experiment;” and 45 minutes for “Try Your Own Experiment.” 1 SETTING UP THE LAB Supplies For the Introduction to the Lab Activities Taste papers: control papers sodium benzoate papers phenylthiourea papers Source: Carolina Biological Supply Company, 1-800-334-5551 (or other biological or chemical supply companies) For the Class Experiment Food items, cut into identical chunks, about one to two-centimeter cubes. Food cubes should be prepared ahead of time by a person wearing latex gloves and using safe preparation techniques. Store the cubes in small lidded containers, in the refrigerator. Prepare enough for each student group to have containers of four or five of the following items, or seasonal items easily available. -
Chemoreception
Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath. -
514414V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/514414; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running title: Primary somatosensory cortex connections. Title: Afferent connections of the primary somatosensory cortex of the mouse for contextual and multisensory processing. Author: Ian Omer Massé PhD1, Sohen Blanchet-Godbout2, Gilles Bronchti PhD2, Denis Boire PhD2 Affiliations: details 1Research Center, Hôpital du Sacré-Cœur de Montréal,for 5400 Gouin Ouest Blvd, Montreal, Quebec, Canada, H4J 1C5 DOI 2Département d’Anatomie, Université du Québec à Trois-Rivières, 3351, des Forges Blvd, C.P. 500, Trois-Rivières, Quebec, Canada, G9A 2W7 manuscript WITHDRAWNsee Number of pages: Number of figures: Number of tables: Number of equations: Total number of words: Number of words in abstract: Keywords: Cross-modal, corticocortical connections, subcortical connections, feedforward, feedback, top-down, bottom-up Corresponding author: Ian Omer Massé PhD Centre de recherche Hôpital du Sacré-Cœur de Montréal 5400, boulevard Gouin Ouest Montréal, Québec H4J 1C5 Phone: 514-338-2222 ext 7711 FAX: 514 338-2694 E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/514414; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
The Importance of Having'good Taste'
The importance of having 'Good Taste' The power to change the lives of persons with deafblindness around the world David Brown, from California Deafblind Services, continues his very successful series of articles about the senses and how they interact aste (the gustatory are distributed over the trigeminal nerve (the fifth sense) is the sense that epiglottis, the soft palate, cranial nerve) in the tongue Tdrives our appetite, and and the laryngeal and oral and the oral cavity. Facial also protects us from poisons. pharynx. The taste receptors palsy results from trigeminal The senses of taste and are sensitive to chemical nerve damage so is likely to smell are very closely linked, stimulation provided by involve some compromise to although stimuli through food substances dissolved the full and effective sense each of these senses travel in saliva in the mouth. of taste. We know that in by very different neurological Many nerves are responsible the population of children routes to reach the brain for transmitting taste with CHARGE Syndrome, for and provide information information to the brain, and example, about 43% have about environmental because of these multiple damage to this fifth cranial events and factors. Previous neural pathways a total nerve, which must present an visual, auditory and tactile loss of taste is very rare. additional, taste, difficulty to experiences can become Alongside distinctive and their other challenges with poweriully attached to identifying taste information eating and drinking. certain taste sensations and (for example, tastes that Infants experience taste memories, and can stimulate we might refer to precisely sensations before birth as strong taste anticipatory as 'banana' or 'coffee' or the first taste buds appear expectations. -
Taste and Smell Disorders in Clinical Neurology
TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments. -
Dissociations Between Microstructural and Functional Hierarchies Within Regions of Transmodal Cortex
bioRxiv preprint doi: https://doi.org/10.1101/488700; this version posted December 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. DISSOCIATIONS BETWEEN MICROSTRUCTURAL AND FUNCTIONAL HIERARCHIES WITHIN REGIONS OF TRANSMODAL CORTEX PAQUOLA C1, VOS DE WAEL R1, WAGSTYL K2, BETHLEHEM RAI3, HONG SJ1, SEIDLITZ J4,5, BULLMORE ET5, EVANS AC1,2, MISIC B1, MARGULIES DS6, SMALLWOOD J7, BERNHARDT BC1* 1 McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; 2 McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC, Canada; 3 Autism Research Centre, Department of Psychiatry, University of Cambridge, England, United Kingdom; 4 Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD 20892, USA; 5 Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Cambridge CB2 0SZ, UK; 6 Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France; 7 York Neuroimaging Center, University of York, UK SUMMARY While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While non- human primate research has demonstrated a close structure-function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. -
Function of Cerebral Cortex
FUNCTION OF CEREBRAL CORTEX Course: Neuropsychology CC-6 (M.A PSYCHOLOGY SEM II); Unit I By Dr. Priyanka Kumari Assistant Professor Institute of Psychological Research and Service Patna University Contact No.7654991023; E-mail- [email protected] The cerebral cortex—the thin outer covering of the brain-is the part of the brain responsible for our ability to reason, plan, remember, and imagine. Cerebral Cortex accounts for our impressive capacity to process and transform information. The cerebral cortex is only about one-eighth of an inch thick, but it contains billions of neurons, each connected to thousands of others. The predominance of cell bodies gives the cortex a brownish gray colour. Because of its appearance, the cortex is often referred to as gray matter. Beneath the cortex are myelin-sheathed axons connecting the neurons of the cortex with those of other parts of the brain. The large concentrations of myelin make this tissue look whitish and opaque, and hence it is often referred to as white matter. The cortex is divided into two nearly symmetrical halves, the cerebral hemispheres . Thus, many of the structures of the cerebral cortex appear in both the left and right cerebral hemispheres. The two hemispheres appear to be somewhat specialized in the functions they perform. The cerebral hemispheres are folded into many ridges and grooves, which greatly increase their surface area. Each hemisphere is usually described, on the basis of the largest of these grooves or fissures, as being divided into four distinct regions or lobes. The four lobes are: • Frontal, • Parietal, • Occipital, and • Temporal. -
Neurogenetic Profiles Delineate Large-Scale Connectivity Dynamics
ARTICLE DOI: 10.1038/s41467-018-06346-3 OPEN Neurogenetic profiles delineate large-scale connectivity dynamics of the human brain Ibai Diez1,2 & Jorge Sepulcre1,3 Experimental and modeling work of neural activity has described recurrent and attractor dynamic patterns in cerebral microcircuits. However, it is still poorly understood whether similar dynamic principles exist or can be generalizable to the large-scale level. Here, we 1234567890():,; applied dynamic graph theory-based analyses to evaluate the dynamic streams of whole- brain functional connectivity over time across cognitive states. Dynamic connectivity in local networks is located in attentional areas during tasks and primary sensory areas during rest states, and dynamic connectivity in distributed networks converges in the default mode network (DMN) in both task and rest states. Importantly, we find that distinctive dynamic connectivity patterns are spatially associated with Allen Human Brain Atlas genetic tran- scription levels of synaptic long-term potentiation and long-term depression-related genes. Our findings support the neurobiological basis of large-scale attractor-like dynamics in the heteromodal cortex within the DMN, irrespective of cognitive state. 1 Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston 02114 MA, USA. 2 Neurotechnology Laboratory, Health Department, Tecnalia Research & Innovation, Derio 48160, Spain. 3 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, -
Identification of Human Gustatory Cortex by Activation Likelihood Estimation
r Human Brain Mapping 32:2256–2266 (2011) r Identification of Human Gustatory Cortex by Activation Likelihood Estimation Maria G. Veldhuizen,1,2 Jessica Albrecht,3 Christina Zelano,4 Sanne Boesveldt,3 Paul Breslin,3,5 and Johan N. Lundstro¨m3,6,7* 1Affective Sensory Neuroscience, John B. Pierce Laboratory, New Haven, Connecticut 2Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 3Monell Chemical Senses Center, Philadelphia, Pennsylvania 4Department of Neurology, Northwestern University, Chicago, Illinois 5Department of Nutritional Sciences, Rutgers University School of Environmental and Biological Sciences, New Brunswick, New Jersey 6Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 7Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden r r Abstract: Over the last two decades, neuroimaging methods have identified a variety of taste-responsive brain regions. Their precise location, however, remains in dispute. For example, taste stimulation activates areas throughout the insula and overlying operculum, but identification of subregions has been inconsistent. Furthermore, literature reviews and summaries of gustatory brain activations tend to reiterate rather than resolve this ambiguity. Here, we used a new meta-analytic method [activation likelihood estimation (ALE)] to obtain a probability map of the location of gustatory brain activation across 15 studies. The map of activa- tion likelihood values can also serve as a source of independent coordinates for future region-of-interest anal- yses. We observed significant cortical activation probabilities in: bilateral anterior insula and overlying frontal operculum, bilateral mid dorsal insula and overlying Rolandic operculum, and bilateral posterior insula/parietal operculum/postcentral gyrus, left lateral orbitofrontal cortex (OFC), right medial OFC, pre- genual anterior cingulate cortex (prACC) and right mediodorsal thalamus. -
Human Taste Thresholds Are Modulated by Serotonin and Noradrenaline
12664 • The Journal of Neuroscience, December 6, 2006 • 26(49):12664–12671 Behavioral/Systems/Cognitive Human Taste Thresholds Are Modulated by Serotonin and Noradrenaline Tom P. Heath,1 Jan K. Melichar,2 David J. Nutt,2 and Lucy F. Donaldson1 1Department of Physiology and 2Psychopharmacology Unit, University of Bristol, Bristol BS8 1TD, United Kingdom Circumstances in which serotonin (5-HT) and noradrenaline (NA) are altered, such as in anxiety or depression, are associated with taste disturbances, indicating the importance of these transmitters in the determination of taste thresholds in health and disease. In this study, we show for the first time that human taste thresholds are plastic and are lowered by modulation of systemic monoamines. Measurement of taste function in healthy humans before and after a 5-HT reuptake inhibitor, NA reuptake inhibitor, or placebo showed that enhancing 5-HT significantly reduced the sucrose taste threshold by 27% and the quinine taste threshold by 53%. In contrast, enhancing NA significantly reduced bitter taste threshold by 39% and sour threshold by 22%. In addition, the anxiety level was positively correlated with bitter and salt taste thresholds. We show that 5-HT and NA participate in setting taste thresholds, that human taste in normal healthy subjects is plastic, and that modulation of these neurotransmitters has distinct effects on different taste modalities. We present a model to explain these findings. In addition, we show that the general anxiety level is directly related to taste perception, suggesting that altered taste and appetite seen in affective disorders may reflect an actual change in the gustatory system.