Pollination and Comparative Reproductive Success of Lady’S Slipper Orchids Cypripedium Candidum , C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native Orchids in Southeast Alaska
Native Orchids in Southeast Alaska Marlin Bowles & Bob Armstrong 2019 Preface Southeast Alaska's rainforests, peatlands and alpine habitats support a wide variety of plant life. The composition of this vegetation is strongly influenced by patterns of plant distribution and geographical factors. For example, the ranges of some Asian plant species extend into Southeast Alaska by way of the Aleutian Islands; other species extend northward into this region along the Pacific coast or southward from central Alaska. Included in Southeast Alaska's vegetation are at least 27 native orchid species and varieties whose collective ranges extend from Mexico north to beyond the Arctic Circle, and from North America to northern Europe and Asia. These orchids survive in a delicate ecological balance, requiring specific insect pollinators for seed production, and mycorrhizal fungi that provide nutrients essential for seedling growth and survival of adult plants. These complex relationships can lead to vulnerability to human impacts. Orchids also tend to transplant poorly and typically perish without their fungal partners. They are best left to survive as important components of biodiversity as well as resources for our enjoyment. Our goal is to provide a useful description of Southeast Alaska's native orchids for readers who share enthusiasm for the natural environment and desire to learn more about our native orchids. This book addresses each of the native orchids found in the area of Southeast Alaska extending from Yakutat and the Yukon border south to Ketchikan and the British Columbia border. For each species, we include a brief description of its distribution, habitat, size, mode of reproduction, and pollination biology. -
Asclepias Purpurascens L. Purple Milkweed
Asclepias purpurascens L. purple milkweed State Distribution Photo by Michael R. Penskar Best Survey Period Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Legal status: State threatened one or two additional umbels are present in the upper leaf axils. The individual flowers, which are usually Global and state rank: G4G5/S3 from 13-17 mm long, bear reflexed, purplish corolla lobes that are glabrous (smooth), pale purple hoods Family: Asclepiadaceae (milkweed family) (forming the corona) 5-7 mm long, and incurved flat horns that are shorter than the hood. The reproductive Total range: Asclepias purpurascens is found parts (filaments, anthers, and style) are fused into a principally in eastern North America, occurring from structure called the gynostegium. The fruit is a smooth New Hampshire south to Virginia and ranging west to follicle (a pod) filled with seeds attached to downy hairs Wisconsin, Iowa, Kansas, and Oklahoma. (coma) that aid in wind dispersal. State distribution: Purple milkweed is known from Asclepias purpurascens is often difficult to distinguish more than 60 occurrences in southern Michigan; thirty- from the very similar looking common milkweed, four of these records are derived from collections made Asclepias syriaca, which despite its unfortunate prior to 1930. This species is concentrated primarily Latin epithet is also a native milkweed. Overall, the in southeastern and southwestern Lower Michigan, leaves of A. purpurascens are more acute and less where it is known from 19 counties, with most counties predominately pinnately–veined (i.e. more strongly tallying only a single occurrence. Counties with the net-veined) than A. -
Cypripedium Candidum Muhl
Cypripedium candidum Muhl. ex Willd. small white lady’s-slipper State Distribution Best Survey Period Photo by Susan R. Crispin Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State threatened clonal clumps. This relatively small lady’s-slipper averages about 20 cm in height, each stem producing several Global and state rank: G4/S2 strongly-ribbed, sheathing leaves that are densely short-hairy. Stems are usually terminated by a single Other common names: white lady-slipper flower (occasionally there may be two) characterized Family: Orchidaceae (orchid family) by its ivory-white pouch (the lip or lower petal) which may be faintly streaked with purple veins toward the Total range: This principally upper Midwestern species bottom and slightly purple-spotted around the pouch ranges eastward to New Jersey and New York, extending opening. The lateral petals, which are similar to the west through southern Michigan to Minnesota, the eastern sepals, are pale yellow-green and spirally twisted. Dakotas, and southern Manitoba and Saskatchewan. To the Cypripedium candidum is known to hybridize with two south it ranges to Nebraska, Missouri, and Kentucky. It is well-known varieties of yellow lady’s-slipper, C. calceolus considered rare in Iowa (S1), Illinois (S3), Indiana (S2), var. pubescens and C. calceolus var. parviflora, producing Kentucky (S1), Michigan (S2), Minnesota (S3), North C. Xfavillianum and C. Xandrewsii, respectively. These Dakota (S2S3), New York (S1), Ohio (S1), South Dakota hybrids are the only taxa that small white lady-slipper is (S1), Wisconsin, and Manitoba. In Pennsylvania and likely to be confused with. -
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Native Orchids in Southeast Alaska with an Emphasis on Juneau
Native Orchids in Southeast Alaska with an Emphasis on Juneau Marlin Bowles & Bob Armstrong 2019 Acknowledgements We are grateful to numerous people and agencies who provided essential assistance with this project. Carole Baker, Gilbette Blais, Kathy Hocker, John Hudson, Jenny McBride and Chris Miller helped locate and study many elusive species. Pam Bergeson, Ron Hanko, & Kris Larson for use of their photos. Ellen Carrlee provided access to the Juneau Botanical Club herbarium at the Alaska State Museum. The U.S. Forest Service Forestry Sciences Research Station at Juneau also provided access to its herbarium, and Glacier Bay National Park provided data on plant collections in its herbarium. Merrill Jensen assisted with plant resources at the Jensen-Olson Arboretum. Don Kurz, Jenny McBride, Lisa Wallace, and Mary Willson reviewed and vastly improved earlier versions of this book. About the Authors Marlin Bowles lives in Juneau, AK. He is a retired plant conservation biologist, formerly with the Morton Arboretum, Lisle, IL. He has studied the distribution, ecology and reproductionof grassland orchids. Bob Armstrong has authored and co-authored several books about nature in Alaska. This book and many others are available for free as PDFs at https://www.naturebob.com He has worked in Alaska as a biologist, research supervisor and associate professor since 1960. Table of Contents Page The southeast Alaska archipellago . 1 The orchid plant family . 2 Characteristics of orchids . 3 Floral anatomy . 4 Sources of orchid information . 5 Orchid species groups . 6 Orchid habitats . Fairy Slippers . 9 Eastern - Calypso bulbosa var. americana Western - Calypso bulbosa var. occidentalis Lady’s Slippers . -
Willi Orchids
growers of distinctively better plants. Nunured and cared for by hand, each plant is well bred and well fed in our nutrient rich soil- a special blend that makes your garden a healthier, happier, more beautiful place. Look for the Monrovia label at your favorite garden center. For the location nearest you, call toll free l-888-Plant It! From our growing fields to your garden, We care for your plants. ~ MONROVIA~ HORTICULTURAL CRAFTSMEN SINCE 1926 Look for the Monrovia label, call toll free 1-888-Plant It! co n t e n t s Volume 77, Number 3 May/June 1998 DEPARTMENTS Commentary 4 Wild Orchids 28 by Paul Martin Brown Members' Forum 5 A penonal tour ofplaces in N01,th America where Gaura lindheimeri, Victorian illustrators. these native beauties can be seen in the wild. News from AHS 7 Washington, D . C. flower show, book awards. From Boon to Bane 37 by Charles E. Williams Focus 10 Brought over f01' their beautiful flowers and colorful America)s roadside plantings. berries, Eurasian bush honeysuckles have adapted all Offshoots 16 too well to their adopted American homeland. Memories ofgardens past. Mock Oranges 41 Gardeners Information Service 17 by Terry Schwartz Magnolias from seeds, woodies that like wet feet. Classic fragrance and the ongoing development of nell? Mail-Order Explorer 18 cultivars make these old favorites worthy of considera Roslyn)s rhodies and more. tion in today)s gardens. Urban Gardener 20 The Melting Plot: Part II 44 Trial and error in that Toddlin) Town. by Susan Davis Price The influences of African, Asian, and Italian immi Plants and Your Health 24 grants a1'e reflected in the plants and designs found in H eading off headaches with herbs. -
Hymenoptera; Andrenidae) Manuela Giovanetti, Eloisa Lasso
Body size, loading capacity and rate of reproduction in the communal bee Andrena agilissima (Hymenoptera; Andrenidae) Manuela Giovanetti, Eloisa Lasso To cite this version: Manuela Giovanetti, Eloisa Lasso. Body size, loading capacity and rate of reproduction in the com- munal bee Andrena agilissima (Hymenoptera; Andrenidae). Apidologie, Springer Verlag, 2005, 36 (3), pp.439-447. hal-00892151 HAL Id: hal-00892151 https://hal.archives-ouvertes.fr/hal-00892151 Submitted on 1 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 36 (2005) 439–447 © INRA/DIB-AGIB/ EDP Sciences, 2005 439 DOI: 10.1051/apido:2005028 Original article Body size, loading capacity and rate of reproduction in the communal bee Andrena agilissima (Hymenoptera; Andrenidae)1 Manuela GIOVANETTIa*, Eloisa LASSOb** a Dip. Biologia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy b Dep. Plant Biology, University of Illinois, 505 S. Goodwin Av., 265 Morrill Hall, Urbana, IL 61801, USA Received 12 February 2004 – revised 3 November 2004 – accepted 12 November 2004 Published online 9 August 2005 Abstract – In bees, body size may be particularly important in determining the loading capacity, and consequently the rate of reproduction. -
Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
! ∀#∀#∃ %& ∋(∀∀!∃ ∀)∗+∋ ,+−, ./ ∃ ∋∃ 0∋∀ /∋0 0 ∃0 . ∃0 1##23%−34 ∃−5 6 Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1,2,3, Roberto Salguero-Gómez1,2,3,4, Anna M. Csergő3, Yvonne M. Buckley1,3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance. -
Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School. -
Population Viability Analysis for the Clustered Lady’S Slipper ( Cypripedium Fasciculatum )
Population Viability Analysis for the clustered lady’s slipper ( Cypripedium fasciculatum ) 2010 Progress Report Rachel E. Newton, Robert T. Massatti, Andrea S. Thorpe, and Thomas N. Kaye Institute for Applied Ecology A Cooperative Challenge Cost Share Project funded jointly by Bureau of Land Management, Medford District, and Institute for Applied Ecology, Corvallis, Oregon PREFACE This report is the result of a cooperative Challenge Cost Share project between the Institute for Applied Ecology (IAE) and a federal agency. IAE is a non-profit organization dedicated to natural resource con- servation, research, and education. Our aim is to provide a service to public and private agencies and individuals by developing and communicating information on ecosystems, species, and effective management strategies and by conducting research, monitoring, and experiments. IAE offers educational opportunities through 3-4 month internships. Our current activities are concentrated on rare and endangered plants and invasive species. Questions regarding this report or IAE should be directed to: Andrea S. Thorpe Institute for Applied Ecology PO Box 2855 Corvallis, Oregon 97339-2855 phone: 541-753-3099, ext. 401 fax: 541-753-3098 email: [email protected], [email protected] ACKNOWLEDGEMENTS The authors gratefully acknowledge the contributions and cooperation by the Medford District Bureau of Land Management, especially Mark Mousseaux. In 2010, work was supported by IAE staff: Michelle Allen, Andrew Dempsey-Karp, Geoff Gardner, Amanda Stanley, and Shell Whittington. Cover photograph : Clustered lady’s slipper ( Cypripedium fasciculatum ). Please cite this report as: Newton, R.E., R.T. Massatti, A.S. Thorpe, and T.N. Kaye. 2010. Population Viability Analysis for the clustered lady’s slipper ( Cypripedium fasciculatum ). -
Central Sikhote-Alin
WHC Nomination Documentation File Name: 766rev.pdf UNESCO Region: EUROPE AND THE NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Central Sikhote-Alin DATE OF INSCRIPTION: 16th December 2001 STATE PARTY: RUSSIAN FEDERATION CRITERIA: N (iv) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 25th Session of the World Heritage Committee The Committee inscribed Central Sikhote-Alin on the World Heritage List under criterion (iv): Criterion (iv): The nominated area is representative of one of the world's most distinctive natural regions. The combination of glacial history, climate and relief has allowed the development of the richest and most unusual temperate forests in the world. Compared to other temperate ecosystems, the level of endemic plants and invertebrates present in the region is extraordinarily high which has resulted in unusual assemblages of plants and animals. For example, subtropical species such as tiger and Himalayan bear share the same habitat with species typical of northern taiga such as brown bear and reindeer. The site is also important for the survival of endangered species such as the scaly-sided (Chinese) merganser, Blakiston's fish-owl and the Amur tiger. This serial nomination consists of two protected areas in the Sikhote- Alin mountain range in the extreme southeast of the Russian Federation: NAME LOCATION AREA Sikhote-Alin Nature Preserve Terney District 401,428 ha Goralij Zoological Preserve Coastal zone on the Sea of Japan, N of Terney 4,749 ha The Committee encouraged the State Party to improve management of the Bikin River protected areas (Bikin Territory of Traditional Nature Use and Verkhnebikinski zakaznik) before nominating it as an extension. -
Cypripedium Parviflorum Salisb
Cypripedium parviflorum Salisb. synonym: Cypripedium calceolus L. var. parviflorum (Salisb.) Fernald yellow lady's-slipper Orchidaceae - orchid family status: State Threatened, USFS sensitive rank: G5 / S2 General Description: Perennial with showy flowers; stems 7-70 cm tall, sparsely pubescent, somewhat glandular. Leaves several, alternate, bases slightly sheathing the stem, broadly elliptic to elliptic-lanceolate, 6-17 x up to 7 cm, lightly pubescent, usually glandular. Floral Characteristics: Flower 1 (rarely 2), terminal, subtended by an erect, leaflike bract. Sepals and petals greenish or yellowish, often marked with dark reddish brown or purplish spots, blotches, or streaks. Upper sepal broadest, 19-80 x 7-40 mm; the lateral pair of sepals completely fused or with only a notch at their tip. Petals somewhat narrower and longer than the sepals, 24-97 x 3-12 mm, often wavy-margined and spirally twisted. Lip strongly pouched, 15-54 mm long, pale to deep yellow (rarely white), sometimes with reddish or Illustration by Jeanne R. Janish, purplish spots around the orifice. Flowers May to June. ©1969 University of Washington Press Fruits: Ellipsoid to oblong-ellipsoid capsules. Identif ication Tips: Cypripedium montanum has a white lip, rarely suffused with magenta. It may hybridize with C. parviflorum, resulting in individuals with very pale yellow lips. The habitat of C. montanum is typically well-drained upland, while that of C. parviflorum is wetland/riparian or the ecotone between wetland and upland. Two varieties, var. makas in and var. pubes cens , are both reported from WA ; their relative abundance and distribution is under review. Range: East of the C ascade crest in B.C ., WA , and O R, to the eastern U.S.