[2.2]Paracyclophane-Based Bisoxazoline Ligands and Their

Total Page:16

File Type:pdf, Size:1020Kb

[2.2]Paracyclophane-Based Bisoxazoline Ligands and Their molecules Communication PlanarCommunication Chiral [2.2]Paracyclophane-Based Bisoxazoline LigandsPlanar Chiral and Their [2.2]Paracyclophane-Based Applications in Cu-Mediated Bisoxazoline N–H InsertionLigands and Reaction Their Applications in Cu-Mediated N–H Insertion1, Reaction1, 1 2 1,3, Daniel M. Knoll y , Yuling Hu y, Zahid Hassan , Martin Nieger and Stefan Bräse * 1 DanielInstitute M. ofKnoll Organic 1,†, Yuling Chemistry Hu (IOC),1,†, Zahid Karlsruhe Hassan Institute 1, Martin of Nieger Technology 2 and (KIT), Stefan Fritz-Haber-Weg Bräse 1,3,* 6, 76131 Karlsruhe, Germany; [email protected] (D.M.K.); [email protected] (Y.H.); 1 [email protected] Institute of Organic Chemistry (Z.H.) (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 2 DepartmentKarlsruhe, Germany; of Chemistry, [email protected] University of Helsinki, (D.M.K.); P.O. [email protected] Box 55 A.I. Virtasen aukio (Y.H.); 1, 00014 Helsinki, Finland; martin.nieger@helsinki.fi[email protected] (Z.H.) 2 3 Institute Department of Toxicology of Chemistry, and University Genetics (ITG), of Helsinki, Karlsruhe P.O. InstituteBox 55 A.I. of Virtasen Technology aukio (KIT), 1, 00014 Helsinki, Hermann-von-Helmholtz-PlatzFinland; [email protected] 1, D-76344 Eggenstein-Leopoldshafen, Germany 3 * Correspondence: Institute of Toxicology [email protected]; and Genetics Tel.: (ITG),+49-7216-084-2902 Karlsruhe Institute of Technology (KIT), Hermann-von- TheseHelmholtz-Platz authors contributed 1, D-76344 equally Eggenstein-Leopoldshafen, to this work. Germany. y * Correspondence: [email protected]; Tel.: +49-7216-084-2902 † These authors contributed equally to this work. Received: 15 October 2019; Accepted: 7 November 2019; Published: 14 November 2019 Received: 15 October 2019; Accepted: 7 November 2019; Published: date Abstract: New catalysts for important C–N bond formation are highly sought after. In this work, we demonstrateAbstract: New the synthesiscatalysts for and important viability C–N of a bond new classformation of planar are highly chiral sought [2.2]paracyclophane-based after. In this work, bisoxazolinewe demonstrate (BOX) the ligands synthesis for theand copper-catalyzedviability of a new class N–H of insertion planar chiral of α -diazocarbonyls[2.2]paracyclophane-based into anilines. Thebisoxazoline reaction features (BOX) aligands wide substratefor the copper-catalyzed scope and moderate N–H toinsertion excellent of yields,α-diazocarbonyls and delivers into the valuableanilines. products The reaction at ambient features conditions. a wide substrate scope and moderate to excellent yields, and delivers the valuable products at ambient conditions. Keywords: [2.2]paracyclophane ligands; N–H insertion; α-diazocarbonyls; planar chirality; copperKeywords: catalysis [2.2]paracyclophane ligands; N–H insertion; α-diazocarbonyls; planar chirality; copper catalysis 1. Introduction 1. Introduction The copper-catalyzed N–H insertion of carbenoids such as easily prepared α-diazocarbonyls is The copper-catalyzed N–H insertion of carbenoids such as easily prepared α-diazocarbonyls is a powerfula powerful method method for for the the preparation preparation ofof highlyhighly valuablevaluable bioactive bioactive molecules molecules and and pharmaceutical pharmaceutical productsproducts[1]. [1]. In In the the past past decade, decade, variousvarious enantioselective chelating chelating ligands ligands based based on on the the bis(oxazoline) bis(oxazoline) motifsmotifs have have been been established established for for this this transformation transformation ( (FigureError! Reference1)[2–8]. source not found.) [2–8]. BOX N,N-ligands O R O O O R N N N R N R X N N N R N R R O R O O O I II III IV X = CH2, (CH2)2, CMe2 FigureFigure 1. Representative1. Representative classes classes of bisoxazoline-containing of bisoxazoline-containingN,N -ligandN,N-ligand systems systems used inused asymmetric in asymmetric catalysis. catalysis. While SpiroBOX IV (Figure1) combines axial chirality from the spiro backbone with the central chiralityWhile of the SpiroBOX 2-substituted IV (Error! BOX Reference moiety, [2.2]paracyclophane source not found.) combines (PCP) exhibits axial chirality planar from chirality, the spiro which hasbackbone previously with demonstrated the central chirality remarkable of the performance 2-substituted as BOX planar moiety, chiral [2.2]paracyclophane ligand or chiral catalyst (PCP) in asymmetricMolecules 2019 catalysis, 24, x; doi:[ FOR9]. NotablePEER REVIEW examples include the addition of alkyl,www.mdpi.com/journal/molecules aryl, alkynyl, and alkenyl Molecules 2019, 24, 4122; doi:10.3390/molecules24224122 www.mdpi.com/journal/molecules MoleculesMolecules 2019 2019, 24, 24, x, xFOR FOR PEER PEER REVIEW REVIEW 2 of 215 of 15 Moleculeshasexhibits previously2019 planar, 24, 4122 demonstrated chirality, which remarkable has previously performance demonstrated as planar remarkable chiral ligand performance or chiral as catalystplanar2 of in 14 asymmetricchiral ligand catalysis or chiral [9]. catalyst Notable in asymmetric examples include catalysis the [9]. addition Notable examplesof alkyl, aryl,include alkynyl, the addition and alkenyl of zincalkyl, reagentsreagents aryl, alkynyl, to to aromatic aromatic and and alkenyland aliphatic aliphatic zinc reagents aldehydes aldehydes to andaromatic and imines imines and that thataliphatic are are catalyzed catalyzedaldehydes by by PCPand PCP ligands[imines ligands[10– that10– 14]. are catalyzed by PCP ligands[10–14]. The PCP core allows different substituents to be positioned The14]. PCPThe corePCP allowscore allows different different substituents substituents to be positioned to be positioned regioselectively regioselectively using carefully using carefully chosen regioselectively using carefully chosen reaction parameters [15]. PCP displays planar chirality if only reactionchosen reaction parameters parameters [15]. PCP [15]. displays PCP displays planar chiralityplanar chirality if only oneif only substituent one substituent is introduced is introduced to one one substituent is introduced to one of the two aromatic benzene rings (decks). If the other deck is ofto theone twoof the aromatic two aromatic benzene benzene rings (decks). rings (decks). If the otherIf the deckother isdeck substituted is substituted as well, as especiallywell, especially with withsubstituted both substituents as well, especially being identical, with both only substituents the pseudo being‐ortho identical,and pseudo only‐meta the PCPpseudo- exhibitortho chirality, and bothpseudo- substituentsmeta PCP being exhibit identical, chirality, only as the the other pseudo- twoortho PCP andisomers pseudo- showmeta higherPCP symmetry exhibit chirality, (Error! as as the other two PCP isomers show higher symmetry (Figure 2) [15]. Thus, the pseudo‐ortho PCP theReference other two source PCP not isomers found. show2) [15]. higher Thus, symmetrythe pseudo- (Figureortho PCP2)[ isomer15]. Thus, is the themost pseudo- suitableortho for aPCP isomer is the most suitable for a chelating BOX ligand with PCP as the backbone – referred to here as isomerchelating is the BOX most ligand suitable with for PCP a chelating as the backbone BOX ligand – referred with PCP to here as the as backbone[2.2]paracyclophane-based – referred to here as [2.2]paracyclophane‐based bisoxazoline (PCPBOX). [2.2]paracyclophane-basedbisoxazoline (PCPBOX). bisoxazoline (PCPBOX). FigureFigure 2.2. 2. AchiralAchiral Achiral and and and chiral chiralchiral isomers isomersisomers of of homodisubstituted homodisubstitutedhomodisubstituted PCP PCP PCP with with with the the substituents the substituents substituents on on di ffdifferentonerent different decks. Thedecks.decks. pseudo- The The pseudo orthopseudo-isomer‐orthoortho isomer isisomer the most isis the suitable most suitablesuitable candidate candidate candidate for PCPBOX for for PCPBOX PCPBOX ligands. ligands. ligands. MukaiMukai et et al. al. recently recently reportedreported on PCPphBOX that that employed employed phenyl phenyl spacers spacers bearing bearing a sterically a sterically demanding substituent between PCP and BOX (Scheme 1). These PCPphBOX served as promising demanding substituent between PCP and BOXBOX (Scheme(Scheme1 1).). These These PCPphBOX PCPphBOX served served as as promising promising chiral ligands for the asymmetric copper-catalyzed inter- and intra-molecular aromatic O–H insertion chiral ligands for the asymmetric copper copper-catalyzed‐catalyzed inter-inter‐ and intra-molecularintra‐molecular aromatic O–H insertion reaction with up to 80%ee [16,17]. Mukai et al. additionally investigated PCPBOX ligands, with reaction withwith up up to to 80% 80%ee [ee16 ,[16,17].17]. Mukai Mukai et al. et additionally al. additionally investigated investigated PCPBOX PCPBOX ligands, ligands, with phenyl, with biphenyl,phenyl, andbiphenyl, without and the without phenyl the as phenyl spacer as groups spacer for groups comparative for comparative studies. studies. We thus We set thus out set to exploreout phenyl,to explore biphenyl, the PCPBOX and without ligands the in copper-catalyzedphenyl as spacer N–H groups insertion for comparative to expand on studies. their versatility We thus. set out theto explore PCPBOX the ligands PCPBOX in copper-catalyzedligands in copper N–H‐catalyzed insertion N–H to insertion expand onto expand their versatility. on their versatility. Scheme 1. The earlier work of Mukai et al. on copper-catalyzed O–H insertion reaction and this
Recommended publications
  • Download Author Version (PDF)
    Chemical Science Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemicalscience Page 1 of 4 PleaseChemical do not adjust Science margins Chemical Science EDGE ARTICLE Absolute Structure Determination of Compounds with Axial and Planar Chirality Using the Crystalline Sponge Method a a a b a Received 00th January 20xx, Shota Yoshioka, Yasuhide Inokuma, Manabu Hoshino, Takashi Sato, and Makoto Fujita* Accepted 00th January 20xx The absolute stereochemistry of compounds with axial and planar chirality is successfully determined by the crystalline DOI: 10.1039/x0xx00000x sponge method without crystallization or derivatization of the compounds. This method is applied to absolute structure determination in the asymmetric synthesis of unique compounds with axial and planar chirality.
    [Show full text]
  • Synthesis of Axially Chiral Biaryl Compounds by Asymmetric Catalytic Reactions with Transition Metals Pauline Loxq, E
    Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals Pauline Loxq, E. Manoury, Rinaldo Poli, Éric Deydier, A. Labande To cite this version: Pauline Loxq, E. Manoury, Rinaldo Poli, Éric Deydier, A. Labande. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coordination Chemistry Re- views, Elsevier, 2016, 308, Part 2, pp.131-190. 10.1016/j.ccr.2015.07.006. hal-01929757 HAL Id: hal-01929757 https://hal.archives-ouvertes.fr/hal-01929757 Submitted on 1 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals Pauline Loxq, a,b Eric Manoury,a,b Rinaldo Poli,a,b,c Eric Deydier a,b,d,* and Agnès Labande a,b,* a CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. b Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France. c Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France. d IUT A Paul Sabatier, Departement de Chimie, Avenue Georges Pompidou, CS 20258, F- 81104 Castres Cedex, France Dedicated to the memory of our colleague and friend Guy Lavigne (1947-2015).
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 4 Organic & Biomolecular Chemistry Journal Name RSCPublishing COMMUNICATION Stereogenic α-carbons determine the shape and topology of [13]-macrodilactones† Cite this: DOI: 10.1039/x0xx00000x Anniefer N. Magpusao, a Kelli Rutledge, a Brandon Q. Mercado, b Mark W. Manuscript Peczuh a * Received 00th January 2012, Accepted 00th January 2012 DOI: 10.1039/x0xx00000x www.rsc.org/ Accepted The synthesis and characterization of new [13]-macrodilactones substituted at stereogenic centers - to the carbonyl are O α O reported. When one center is substituted, it directs the topology 4 of the macrocycle; when two centers are substituted, both the 7 shape and the topology are influenced.
    [Show full text]
  • Graphical Representation of Stereochemical Configuration
    Pure Appl. Chem., Vol. 78, No. 10, pp. 1897–1970, 2006. doi:10.1351/pac200678101897 © 2006 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMICAL NOMENCLATURE AND STRUCTURE REPRESENTATION DIVISION* GRAPHICAL REPRESENTATION OF STEREOCHEMICAL CONFIGURATION (IUPAC Recommendations 2006) Prepared for publication by JONATHAN BRECHER CambridgeSoft Corporation, 100 CambridgePark Drive, Cambridge, MA 02140, USA *Developed by the Task Group for Graphical Representation Standards for Chemical Structure Diagrams: Chairman: W. Town (UK); Members: J. Brecher (USA), K. N. Degtyarenko (UK), H. Gottlieb (USA), R. M. Hartshorn (New Zealand), G. P. Moss (UK), P. Murray-Rust (UK), J. Nyitrai (Hungary), W. Powell (USA), A. Smith (USA), S. Stein (USA), K. Taylor (USA), A. Williams (USA), A. Yerin (Russia); Corresponding Members: S. Conway (UK), H. Cooke (USA), P. Giles (USA), M. Griffiths (USA), B. Košata (Czech Republic), B. Ramsay (USA). Comments and suggestions for future revisions of these recommendations may be sent to Jonathan Brecher ([email protected]) or to the Secretary of the Division. Membership of the Division Committee when this report was approved: President: A. D. McNaught (UK); Vice President: G. P. Moss (UK); Secretary: W. H. Powell (USA); Titular Members: T. Damhus (Denmark), R. M. Hartshorn (New Zealand), H. D. Kaesz (USA), J. Kahovec (Czech Republic), J. Nyitrai (Hungary), A. Williams (USA), A. Yerin (Russia); Associate Members: J. Brecher (USA), S. Heller (USA), M. Hess (Germany), A. J. Lawson (Germany), G. J. Leigh (UK), M. Toussant (USA); National Representatives: R. Hoyos de Rossi (Argentina), L. F. Lindoy (Australia), R. de Barros Faria (Brazil), J. He (China), P. Righi (Italy), C. S.
    [Show full text]
  • Stereoismerism Jeannecrassou
    CHIRASKOOL Jeanne Crassous Phosphore et Matériaux Moléculaires http://pmm.univ-rennes1.fr/ Institut des Sciences Chimiques de Rennes UMR CNRS 6226 Université Rennes1, Av. du Général Leclerc 35042 C Rennes Cedex, France, H I [email protected] R A F U N Historical aspects and properties of enantiomers Definitions Symmetry aspects Symmetry point groups for achiral molecules Symmetry point groups for chiral molecules Molecules with stereogenic centers Asymmetric carbon, chiral amines, sulfoxides, phosphines, … Half-sandwich complexes, metallocenes Tetrahedral or spiro-type complexes Octahedral Complexes Molecules displaying axial chirality Examples of allenes Atropoisomerism and axial chirality Planar chirality Inherent chirality Helicenes, fullerenes Trefoil knots and topological chirality Selected examples: stereochemistry of helicene derivatives Some (simplified) history… Bartholin (1669) birefringence Iceland Spar – Spath d’Islande (CaCO3) Malus (1808) Polarization of light Direction of propagation Wave seen Polarization plane by the observer Abbey Haüy (1809) modern crystallography, hemihedry Mitscherlich (1819) polymorphism Arago (1811) Herschel (1820) Hemihedral crystals of quartz They ‘turn the light’ : they have a rotatory power The Biot’s polarimeter (1815) Solutions of camphor, glucose, tartaric acid They ‘turn the light’ : they have a rotatory power (optical rotation) Camphor tree Grapes (tartaric acid) The tartrates by Pasteur (1848) 1820 Kessler (Alsacian chemist) Synthesis of a mysterious acid after refining the
    [Show full text]
  • Planar Chiral Lewis Acids and Lewis Pairs Based On
    PLANAR CHIRAL LEWIS ACIDS AND LEWIS PAIRS BASED ON FERROCENE by JIAWEI CHEN A Dissertation submitted to the Graduate School-Newark Rutgers, The State University of New Jersey in partial fulfillment of requirements for the degree of Doctor of Philosophy Graduate Program in Chemistry written under the guidance of Professor Frieder Jäkle and approved by Newark, New Jersey May, 2014 © 2014 Jiawei Chen ALL RIGHTS RESERVED ABSTRACT OF THE DISSERTATION PLANAR CHIRAL LEWIS ACIDS AND LEWIS PAIRS BASED ON FERROCENE by Jiawei Chen Dissertation Advisor: Professor Frieder Jäkle Organoboranes have been widely used for catalytic transformations, polymerizations, small molecule activation, anion and glycol sensing and construction of electronic materials. These remarkable applications commonly benefit from the electron-deficient nature of tricoordinate boron, i.e., its empty p- orbital can accommodate a lone pair of electrons or participate in conjugation of extended π-systems. Therefore, approaches to enhance the Lewis acidity of the boron center are desirable, and different strategies have been introduced with this aim, including (1) installation of electron withdrawing pendant groups such as pentafluorophenyl groups; (2) generation of cationic borenium species and (3) incorporation of tricoordinate boron into anti-aromatic systems such as borole derivatives. Recently, much effort has been directed to the preparation of the so- called “Frustrated Lewis Pair” (FLP) and the application of their unquenched relativity for catalytic transformations. However, chiral versions of highly Lewis acidic organoboranes remain scarce. On the other hand, planar chiral ferrocenes have proven to provide rigid frameworks for transition metal ligands such as ii phosphines and amines, which have been successfully applied to the asymmetric hydrogenation of alkenes, ketones and other processes.
    [Show full text]
  • Memory of Chirality: a Strategy for Asymmetric Synthesis
    Memory of Chirality: A Strategy for Asymmetric Synthesis David J. Richard September 14, 2005 Two Forms of Chirality Absolute (Static) Chirality H NH2 Ph OH O - Absolute chirality - orientation of functional groups at a stereocenter Dynamic (Conformational) Chirality H H H CO2H HO C H Ph OH 2 Ph Ph H H O - Dynamic chirality - chirality present only when C-C single bond rotation is restricted H3C CH3 CH3 H3C Barrier of rotation = 18 kcal/mol Memoryof Chirality in Enolate Chemistry - In 1981, Seebach and Wasmuth made the following observation: O LDA Ot-Bu O t-BuO THF, t-BuO t-BuO Ot-Bu OLi Ot-Bu HN CH3 O HN then MeI O N O O O OLi 15%, 60% ee - No mechanism was established; however, one hypothesis was that reaction occurred through an axially chiral intermediate - Mixed aggregates involving the chiral enolate below were later implicated O t-BuO Ot-Bu OLi HN O Seebach, D.; Wasmuth, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 971. Seebach, D.; Sting, A. R.; Hoffman, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2708. Memoryof Chirality: Definition Problem: Can stereochemical information be retained during a process in which the sole stereogenic center of a substrate is destroyed? NHR H NHR1 1 R NHR1 Ph OCH3 Ph OCH Ph OCH3 3 * O OM O > 0% ee Memory of chirality (MOC) has been defined as a process in which: "the chirality of the starting material is preserved in a reactive intermediate for a limited time" Fuji, K.; Kawabata, T. Chem.-Eur. J. 1998, 4, 373-378.
    [Show full text]
  • Shaping the Rings of Molecules 21 February 2020
    Shaping the rings of molecules 21 February 2020 And that could be a boon for the making of pharmaceuticals and electronics, they say. "The shapes of the macrocycles we have made is what makes them special—they are what we call planar chiral," said Collins. "And the planar chiral topology controls how the molecules interact with nature. In general, macrocycles with planar chirality are underexplored, because chemists usually have a lot of trouble making them." Until now, they had two choices: perform multi-step syntheses that are tedious and wasteful, or they could exploit methods that employ catalysts based Model chiral macrocycle (shown in blue) in the catalytic pocket of the enzyme CALB (shown in grey, catalytic on elements that are toxic, expensive and non- serine 105 colored in green [PDB ID 5GV5]). The figure abundant in the Earth's crust, such as ruthenium was generated using The PyMOL Molecular Graphics and rhodium. System, Version 1.2r3pre, Schrödinger, LLC. The docking of the macrocycles was carried out with the Both approaches have long frustrated chemists, Fitted program from the Forecaster computational and Collins' team looked for an alternative. They platform. Credit: Université de Montréal found it in biocatalysis, a process that uses enzymes, biological and typically non-toxic catalysts, as a solution to preparing planar chiral macrocycles. Macrocycles are molecules made of large rings of atoms. Despite being relatively big and flexible, the Remarkably, even though chemists had never molecules don't always stay "floppy"—they can before explored biocatalysis for the synthesis of actually lock themselves into specific shapes and planar chiral macrocycles, it turned out there was a geometries.
    [Show full text]
  • Arenes with Planar Chirality: Two New Entries to the Family
    Pure Appl. Chem. 2014; 86(11): 1819–1828 Conference paper José V. Prata*, Patrícia D. Barata and Gennaro Pescitelli Inherently chiral calix[4]arenes with planar chirality: two new entries to the family Abstract: The synthesis of two new inherently chiral calix[4]arenes (ICCs, 1 and 2), endowed with elec- tron-rich concave surfaces, has been achieved through the desymmetrization of a lower rim distal-bridged oxacyclophane (OCP) macrocycle. The new highly emissive ICCs were resolved by chiral HPLC, and the enan- tiomeric nature of the isolated antipodes proved by electronic circular dichroism (CD). Using time-dependent density functional calculations of CD spectra, their absolute configurations were established. NMR studies with (S)-Pirkle’s alcohol unequivocally showed that the host-guest interactions occur in the chiral pocket comprehending the calix-OCP exo cavities and the carbazole moieties. Keywords: absolute configuration assignment; Calix[4]arenes; chiroptical properties; fluorescence; POC- 2014; planar chirality; TDDFT calculations. DOI 10.1515/pac-2014-0707 Introduction Calixarenes are widely recognized as one of the most useful classes of synthetic molecular receptors [1, 2]. Endowed with the capability of recognizing neutral molecules, metal and molecular cations, and anions, calixarenes have been extensively used as building blocks in the construction of countless three-dimensional hosts for applications in various fields [1–3]. Calix[4]arene compounds in particular, due to their bowl-shaped intramolecular cavities in a cone conformation, are known to selectively interact with structurally comple- mentary molecular species in fluid phase and solid state, once structural rigidification and proper function- alization of the basic calixarene skeleton has been accomplished.
    [Show full text]
  • [2.2]Paracyclophane–4–Thiol: a Planar Chiral Sulfur-Based Building Block
    Enantiomerically Pure [2.2]Paracyclophane–4–thiol: A Planar Chiral Sulfur-based Building Block Readily Available by Resolution with an Amino Acid Chiral Auxiliary Adrien Vincent, † Damien Deschamps, † Thomas Martzel, † Jean-François Lohier, † Christopher J. Richards, ‡ Annie-Claude Gaumont, † and Stéphane Perrio* ,† † Normandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 14000 Caen, France. Full address: Laboratoire de Chimie Moléculaire et Thioorganique, UMR CNRS 6507, INC3M, FR 3038, ENSICAEN & Université de Caen-Normandie, 14050 Caen, France. ‡ School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, U.K. [email protected] RECEIVED DATE * To whom correspondence should be addressed. Phone: Int. code +23145-2884. Fax: Int. code +23145-2865 Graphical Abstract 1 Abstract: Acyl chloride of N-phthaloyl-(S)-isoleucine is an efficient chiral auxiliary for the resolution of (±)-[2.2]paracyclophane-4-thiol. A preparative protocol,based on theconversion into diastereoisomeric thiolesters andseparation by two fractional crystallizations and column chromatography, was developed. Deprotection with LiAlH 4 allowed isolation of the individual thiol enantiomers in good yield (~ 40%) and high enantiomeric purity (ee > 93%). The absolute configurations were determined by comparison of the optical rotation value of the products with literature data, and confirmed by X-ray crystallography. [2.2]Paracyclophane (PCP) 1(R 1 = H) is the parent hydrocarbon for a fascinating family of organic compounds consisting of a rigid cofacial arrangement of two benzene 1 unitsbridged at the para positions by CH 2CH 2 groups (Figure 1). Following the pioneering reports by Brown, Farthing and Crammore than sixty years ago,2the appealing structural, physical and electronic properties of [2.2]PCP derivatives haveresulted in significant attention.
    [Show full text]
  • Co-Crystallization Induced Spontaneous Deracemization
    I UNIVERSITÉ CATHOLIQUE DE LOUVAIN INSTITUTE OF CONDENSED MATTER AND NANOSCIENCES (IMCN) Laboratory of Crystal Engineering Prof. Tom Leyssens Laboratory of Organic Chemistry Prof. Olivier Riant Development and Optimization of a new general thermodynamic deracemization method: Co-crystallization Induced Spontaneous Deracemization Thèse présentée en vue de l'obtention du grade de docteur en Sciences par Michael Guillot Louvain-la-Neuve Septembre 2020 II Jury Members Prof. Y. Cartigny Université de Rouen Normandie Prof. S. Kuhn Katholieke Universiteit Leuven Prof. M. Singleton Université catholique de Louvain Dr. K. Robeyns Université catholique de Louvain Prof. Y. Garcia (President) Université catholique de Louvain Prof. T. Leyssens (Promotor) Université catholique de Louvain Prof. O. Riant (Co-promotor) Université catholique de Louvain III Acknowledgements Je tiens tout d’abord à remercier mon promoteur, le professeur Tom Leyssens de m’avoir offert la chance de faire partie de son laboratoire pendant ces 4 années qui furent épanouissantes sur tous les plans. Je le remercie pour son encadrement tout au long de ma thèse, pour son soutien tant scientifique que personnel (surtout pendant « the dark year » où plus rien ne semblait marcher, je pense que tu vois de quel moment je parle Tom ;)) et pour la proximité qu’il sait créer au sein de son équipe. Je le remercie pour les congrès et séjours scientifiques que j’ai pu réaliser grâce à lui et qui ont tant participé à mon apprentissage autant scientifique que personnel. Je tiens tout aussi à remercier mon co-promoteur, le professeur Olivier Riant, pour ses conseils et corrections tout au long de ces quatres années de thèse.
    [Show full text]
  • Planar Chiral Phosphoramidites with A
    Planar Chiral Phosphoramidites with a Paracyclophane Scaffold: Synthesis, Gold(I) Complexes, and Enantioselective Cycloisomerization of Dienynes Zhiyong Wu, Kevin Isaac, Pascal Retailleau, Jean-François Betzer, Arnaud Voituriez, Angela Marinetti To cite this version: Zhiyong Wu, Kevin Isaac, Pascal Retailleau, Jean-François Betzer, Arnaud Voituriez, et al.. Planar Chiral Phosphoramidites with a Paracyclophane Scaffold: Synthesis, Gold(I) Complexes, and Enan- tioselective Cycloisomerization of Dienynes. Chemistry - A European Journal, Wiley-VCH Verlag, 2016, 22 (10), pp.3278-3281. 10.1002/chem.201504658. hal-02152297 HAL Id: hal-02152297 https://hal.archives-ouvertes.fr/hal-02152297 Submitted on 20 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Planar Chiral Phosphoramidites with Paracyclophane Scaffold: Synthesis, Gold(I) Complexes and Enantioselective Cycloisomerization of Dienynes Zhiyong Wu, Kévin Isaac, Pascal Retailleau, Jean-François Betzer,* Arnaud Voituriez* and Angela Marinetti[a] function is included into a disubstituted paracyclophane scaffold. The targeted paracyclophanes display a 1,1’-biphenylene unit and a O-P-O chain tethering the arylidene groups.[9] Planar Abstract: The key structural feature of the new phosphoramidites is chirality is generated by adding aryl substituents (Ar) on both a paracyclophane scaffold in which two aryl rings are tethered by sides of the paracyclophane moiety.
    [Show full text]