Separation of Enantiomers by Chromatography As a Vehicle for Chiral Catalysis

Total Page:16

File Type:pdf, Size:1020Kb

Separation of Enantiomers by Chromatography As a Vehicle for Chiral Catalysis CROATICA CHEMICA ACTA CCACAA, ISSN-0011-1643, ISSN-1334-417X Croat. Chem. Acta 82 (2) (2009) 503–530 CCA-3341 Author's Review Separation of Enantiomers by Chromatography as a Vehicle for Chiral Catalysis. Abridged Review* Vitomir Šunjić Chirallica Ltd., Bijenička 54, 10002 Zagreb, Croatia (E-mail: [email protected]) RECEIVED MAY 14, 2008; REVISED NOVEMBER 19, 2008; ACCEPTED NOVEMBER 22, 2008 Abstract. Chiral, or asymmetric catalysis is the most efficient approach to chiral molecules in the enantio- merically enriched form. Organocatalysis and organometallic catalysis are nowadays the methods of choice in this field. In the first case enantiomerically pure chiral organic molecules of different symmetry classes exhibit catalytic effect, in the second one chiral organic molecule acts as the ligand in the organo- metallic complex that exerts catalytic activity. In both cases small amount, milligrams or grams, of enan- tiopure organic or organometallic catalyst suffice to produce substantial amounts, grams or tons, of chiral products of academic or commercial interest. Due to the need for limited quantities of chiral organic mole- cules in the optically pure form to act as the catalysts or be the part of the catalytic systems, preparative chromatographic separation, and in particular simulated moving bed (SMB) chromatographic resolution of racemic material, represent valuable approach. Examples of separation of racemates by chiral chroma- tography and SMB technology to catalytically useful enantiomers are presented, and application of enan- tiomers from different symmetry classes in efficient catalytic processes is highlighted. Keywords: separation of enantiomers by cromatography, simulated moving bed (SMB) technology, chiral catalysis INTRODUCTION ceuticals, their intermediates, and last not the least, for separation of chiral compounds that will serve as organo- Effective transfer of scientific results from academic catalysts or as the parts of organometallic catalytic com- research into technical, problem-solving sphere of in- plexes. Ready accessibility of optically pure organo- dustrial R&D is ever more demanding process. This catalysts and ligands is one of the most critical factors stays in particular for the results of research in chemi- when a practical methodology for asymmetric catalysis stry, where any larger-scale experimentation requires is emerging. Their availability in homochiral, optically expensive equipment, and consumption of row materials pure form from racemic, easily available, compounds by under huge pressure of prices and ambiental-protection “chiral chromatography” makes novel catalytic proces- requirements. Even when these tasks are solved from ses possible. the financial, ecological and organizational aspects, Such complex research was traditionally per- newly developed technology will meet harsh require- formed in academic laboratories, nowadays however it ments for competitive position on the global market. is shifted to “start-up companies” or “innovation com- Western and Eastern World are responding to panies”, or “biotech companies”.2 Some own results these challenges by founding new, science-based (bio- presented in this abridged review are obtained in early tech) companies in the chemical industry.1 Among them period at CATBIO Laboratory (www.spider.irb.hr/ are companies dealing with the development of new CatBio.htm), more recently at Chirallica Ltd., (www. catalysts, production of new HPLC columns with chiral chiralica.hr.com), spin-off company, both at “Ruđer stationary phases (CSPs) for the separation of pharma- Bošković” Institute, Zagreb. * Dedicated to Professor Emeritus Drago Grdenić, Fellow of the Croatian Academy of Sciences and Arts, on the occasion of his 90th birthday. 504 V. Šunjić, Cromatographic Enantioseparation Triggers Chiral Catalysis APPLICATION OF OPTICALLY PURE their availability from the “chiral pool” of Nature. Na- COMPOUNDS AS THE CATALYSTS AND ture regularly creates chiral molecules with C1 sym- CHROMATOGRAPHIC ENANTIOSEPARATION metry, and almost exclusively in one enantiomeric 5 OF THEIR RACEMATES form. Such C1 symmetric molecules are often submis- sive to further chemical modifications to give catalytic Chirality of the Catalytic Molecules and Ligands and non-catalytic auxiliary agents in synthetic organic chemistry, with already mentioned limitation that only Effective catalytic production of chiral molecules in the one enantiomer is usually available. The first two mole- enantiomerically enriched form generally does not de- cules (1,2) in the Figure 1 are natural compounds, the pend on the symmetry group to which catalytically third chiral molecule with C symmetry (3) is an un- active chiral molecule belongs. Chiral molecule do not 1 natural structure, prepared in the laboratory to act as posses 2nd order elements of chirality; alternating axis of monodentate ligand, see section Centro-chiral Ligands. symmetry of the second order (Sn), center of symmetry (i), or plane of symmetry (σ).3,4 Alternating axes, centers What about availability of axial-chiral, as exempli- and planes of symmetry are elements that correspond to fied by C2 and C3 symmetric molecule in the Figure 1, “symmetry operations of the second kind” which cannot and planar-chiral molecules? They can be prepared be performed on chiral molecules. Chiral molecules either in the enantiomerically pure form, often a dif- belong to Cn and Dn point groups; in the former Cn axis ficult task, or as racemate and then submitted to sepa- is the only symmetry element, the later are characterized ration of single enantiomers. It is this last approach that 3 by n C2 axis perpendicular to the main Cn axis. They is so attractive for preparation of chiral catalysts, in are usually named centro-chiral, axial-chiral and planar- particular when completed by chromatographic sepa- chiral molecules; representatives of chiral molecules (1– ration on chiral stationary phases (CSPs). This method 7) and one achiral molecule (8) active as organocata- affords both enantiomers with high optical purity and in lysts or ligands are given in the Figure 1. quantities sufficient for testing in the enantioselective catalytic reaction. If one enantiomer proves effective, As will be exemplified in the next chapters, there but specific target molecule is obtained with “wrong” are many representatives of above classes of chiral configuration, application of the second enantiomer as molecules that are highly effective organocatalysts or catalyst elegantly resolves the problem. ligands in organometallic complexes. It is still an art in synthetic chemistry to design an effective chiral catalyst Some axially chiral enantiomers are characterized for specific organic reaction, as e.g. C–C, C–H, C–N by relatively low configurational stability, based on the and C–O bond-forming reactions, or skeletal rear- hindered rotation around C–C bond which is perpen- rangements under formation of a new stereogenic cen- dicular to C2 axis. Low configurational stability characte- ter. There is an important practical aspect that differen- rizes also some planar-chiral molecules, as will be dis- tiates three classes of chiral molecules in the Figure 1; cussed in the section Planar-chiral Complexes. Figure 1. Examples of catalytically active molecules and ligands that belong to various symmetry groups. Croat. Chem. Acta 82 (2009) 503–530 V. Šunjić, Cromatographic Enantioseparation Triggers Chiral Catalysis 505 recent monographs and reviews.6–10 We published an author-review related to our research on novel CSPs in this Journal,11 and informative overviews in the tech- nology oriented journal.12,13 Mechanism of chiral recog- nition by various CSPs, specific application of the bio- polymer-based CSPs, polysaccharide-type and protein- type being the most important ones, and brush-type CSPs, will not be discussed and interested reader is directed to consult the above references. For the purpose of easier following of discussion in the next chapters, only two aspects of chiral chromatography will be shortly commented here; types of chiral selectors (CS) nowa- days in the common use, and elementary thermodynam- ics of chromatographic enantioseparation. Figure 2. Four most important polysaccharide-based chiral selectors (“golden four”). Two important elements distinguish two main types of CS; molar mass and type of binding to silica. There is one peculiarity related to the molecules According to molar mass CS are either derived from possessing C3-axis. They are chiral if no element of the chiral polymers, usually from polysaccharides or pro- second order (i, Sn, σ) is present, as represented by tri- teins, or they are small chiral molecules, often designed podal phosphane 7 in the Figure 1. In the molecule 8 on purpose for separation of specific racemate, and three σ-planes are present, it is achiral and belongs to named “brush-type” or “Pirkle type”, according to the 14 C3v (D3) symmetry group. On coordination to Pd, how- inventor of such CSPs. Polysaccharide based CS ever, the whole complex adopts planar chirality. represent over 90 % of the market, and in even higher percentage considering the number of reported sepa- Rarity of chiral organic molecules in Nature with ration of racemates. Four of them, called “golden four”, axial and planar symmetry, but their availability in both practically cover this market, two of them are based on enantiomeric forms by chromatographic separation of cellulose (Chiralcel), and the other two on amylose racemic mixtures
Recommended publications
  • Thiourea Derivatives of Tröger's Base
    General Papers ARKIVOC 2009 (xiv) 124-134 Thiourea derivatives of Tröger’s base: synthesis, enantioseparation and evaluation in organocatalysis of Michael addition to nitroolefins Delphine Didiera and Sergey Sergeyeva,b* a Université Libre de Bruxelles (ULB), Laboratoire de Chimie des Polymères, CP 206/01, Boulevard du Triomphe, 1050 Brussels, Belgium b University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, 2020 Antwerp, Belgium E-mail: [email protected] Abstract The catalytic activity of racemic thiourea derivatives of Tröger’s base (±)-2–4 in Michael additions of malonate derivatives to trans-β-nitrostyrene was studied. Due to the low basicity of Tröger’s base, the outcome of the addition reactions was strongly dependent on the pKa of the nucleophile. Thiourea catalysts (±)-2, 3 were resolved on the chiral stationary phase Whelk O1. Unfortunately, enantiopure catalysts 2 and 3 showed no stereoselectivity in the Michael addition. Keywords: Tröger’s base, thiourea, Michael addition, catalysis, WhelkO1 Introduction In the recent years, asymmetric organocatalysis has emerged as a competitive, environment- friendlier alternative to catalysis with transition metal complexes. While simple molecules such as derivatives of proline have been receiving a great deal of attention due to their availability, considerable effort has been directed towards searching for novel chiral scaffolds for asymmetric organocatalysis.1 Tröger’s base 1 is a chiral diamine bearing two stereogenic bridge-head nitrogen atoms (Figure 1). The two aromatic rings fused to the central bicyclic framework are almost perpendicular to each other, creating a rigid, V-shaped C2-symmetrical molecular scaffold with a distance of ca. 1nm between the two extremities.2 Due to its chirality and relatively rigid geometry, one would intuitively expect a considerable interest for analogues of Tröger’s base in the field of asymmetric synthesis and catalysis.
    [Show full text]
  • – with Novozymes Enzymes for Biocatalysis
    Biocatalysis Pregabalin case study Smarter chemical synthesis – with Novozymes enzymes for biocatalysis The new biocatalytic route results in process improvements, reduced organic solvent usage and substantial reduction of waste streams in Pregabalin production. Introduction Biocatalysis is the application of enzymes to replace chemical Using Lipolase®, a commercially available lipase, rac-2- catalysts in synthetic processes. In recent past, the use of carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester biocatalysis has gained momentum in the chemical and (1) can be resolved to form (S)-2-carboxyethyl-3-cyano-5- pharmaceutical industries. Today, it’s an important tool for methylhexanoic acid (2). Compared to the first-generation medicinal, process and polymer chemists to develop efficient process, this new route substantially improves process and highly attractive organic synthetic processes on an efficiency by setting the stereocenter early in the synthesis and industrial scale. enabling the facile racemization and reuse of (R)-1. The biocatalytic process for Pregabalin has been developed It outperforms the first-generation manufacturing process also by Pfizer to boost efficiency in Pregabalin production using by delivering higher yields of Pregabalin and by resulting in Novozymes Lipolase®. substantial reductions of waste streams, corresponding to a 5-fold decrease in the E-Factor from 86 to 17. Development of the biocatalytic process for Pregabalin involves four stages: • Screening to identify a suitable enzyme • Performing optimization of the enzymatic reaction to optimize throughput and reduce enzyme loading • Exploring a chemical pathway to preserve the enantiopurity of the material already obtained and lead to Pregabalin, and • Developing a procedure for the racemization of (R)-1 Process improvements thanks to the biocatalytic route Pregabalin chemical synthesis H Knovenagel CN condensation cyanation KOH 0 Et02C CO2Et Et02C CO2Et Et02C CO2Et CNDE (1) CN NH2 1.
    [Show full text]
  • Chiral Auxiliaries and Optical Resolving Agents
    Chiral Auxiliaries and Optical Resolving Agents Most bioactive substances are optically active. For instance, if This brochure introduces a variety of chiral auxiliaries and a substance is synthesized as a racemic compound, its optical resolving agents. We hope that it will be useful for your enantiomer may show no activity or even undesired bioactivity. research of the synthesis of optically active compounds. Thus, methods to gain enantiopure compounds have been Additionally, TCI has some brochures introducing chiral developed. When synthesizing enantiopure compounds, the compounds for the chiral pool method in “Chiral Building Blocks”, methods are roughly divided into three methods. “Terpenes”, “Amino Acids” and other brochures. Sugar derivatives are also introduced in a catalog, “Reagents for Glyco Chemistry Chiral pool method: & Biology”, and category pages of sugar chains. Furthermore, The method using an easily available chiral compound as a TCI has many kinds of catalysts for asymmetric synthesis and starting material like an amino acid or sugar. introduce them in brochures such as “Asymmetric Synthesis” and Asymmetric synthesis: “Asymmetric Organocatalysts”, and other contents. The method to introduce an asymmetric point to compounds You can search our information through “asymmetric synthesis” without an asymmetric point. Syntheses using achiral as a keyword. auxiliaries are included here. Optical resolution: The method to separate a racemic compound into two ● Reactions with Chiral Auxiliaries enantiomers. The direct method using a chiral column and One of the most famous named reactions using chiral auxiliaries1) the indirect method to separate two enantiomers using is the Evans aldol reaction.2) This reaction is quite useful because optical resolving agents to convert into diastereomers are this reaction can efficiently introduce two asymmetric carbons into examples.
    [Show full text]
  • A Reminder… Chirality: a Type of Stereoisomerism
    A Reminder… Same molecular formula, isomers but not identical. constitutional isomers stereoisomers Different in the way their Same connectivity, but different atoms are connected. spatial arrangement. and trans-2-butene cis-2-butene are stereoisomers. Chirality: A Type of Stereoisomerism Any object that cannot be superimposed on its mirror image is chiral. Any object that can be superimposed on its mirror image is achiral. Chirality: A Type of Stereoisomerism Molecules can also be chiral or achiral. How do we know which? Example #1: Is this molecule chiral? 1. If a molecule can be superimposed on its mirror image, it is achiral. achiral. Mirror Plane of Symmetry = Achiral Example #1: Is this molecule chiral? 2. If you can find a mirror plane of symmetry in the molecule, in any achiral. conformation, it is achiral. Can subject unstable conformations to this test. ≡ achiral. Finding Chirality in Molecules Example #2: Is this molecule chiral? 1. If a molecule cannot be superimposed on its mirror image, it is chiral. chiral. The mirror image of a chiral molecule is called its enantiomer. Finding Chirality in Molecules Example #2: Is this molecule chiral? 2. If you cannot find a mirror plane of symmetry in the molecule, in any conformation, it is chiral. chiral. (Or maybe you haven’t looked hard enough.) Pharmacology of Enantiomers (+)-esomeprazole (-)-esomeprazole proton pump inhibitor inactive Prilosec: Mixture of both enantiomers. Patent to AstraZeneca expired 2002. Nexium: (+) enantiomer only. Process patent coverage to 2007. More examples at http://z.umn.edu/2301drugs. (+)-ibuprofen (-)-ibuprofen (+)-carvone (-)-carvone analgesic inactive (but is converted to spearmint oil caraway oil + enantiomer by an enzyme) Each enantiomer is recognized Advil (Wyeth) is a mixture of both enantiomers.
    [Show full text]
  • Part I Principles of Enzyme Catalysis
    j1 Part I Principles of Enzyme Catalysis Enzyme Catalysis in Organic Synthesis, Third Edition. Edited by Karlheinz Drauz, Harald Groger,€ and Oliver May. Ó 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. j3 1 Introduction – Principles and Historical Landmarks of Enzyme Catalysis in Organic Synthesis Harald Gr€oger and Yasuhisa Asano 1.1 General Remarks Enzyme catalysis in organic synthesis – behind this term stands a technology that today is widely recognized as a first choice opportunity in the preparation of a wide range of chemical compounds. Notably, this is true not only for academic syntheses but also for industrial-scale applications [1]. For numerous molecules the synthetic routes based on enzyme catalysis have turned out to be competitive (and often superior!) compared with classic chemicalaswellaschemocatalyticsynthetic approaches. Thus, enzymatic catalysis is increasingly recognized by organic chemists in both academia and industry as an attractive synthetic tool besides the traditional organic disciplines such as classic synthesis, metal catalysis, and organocatalysis [2]. By means of enzymes a broad range of transformations relevant in organic chemistry can be catalyzed, including, for example, redox reactions, carbon–carbon bond forming reactions, and hydrolytic reactions. Nonetheless, for a long time enzyme catalysis was not realized as a first choice option in organic synthesis. Organic chemists did not use enzymes as catalysts for their envisioned syntheses because of observed (or assumed) disadvantages such as narrow substrate range, limited stability of enzymes under organic reaction conditions, low efficiency when using wild-type strains, and diluted substrate and product solutions, thus leading to non-satisfactory volumetric productivities.
    [Show full text]
  • Lectures 2014
    Selective Organic Synthesis KD 2390 (9 hp) Christina Moberg The advent of organic chemistry shaped the world • Biology is dependent on organic synthesis • Organic synthesis is the foundation for biotechnology, nanotechnology, pharmaceutical industry, and material industry About the course: • Disposition: lectures, exercises, lab, workshop • Course book: Clayden, Greeves and Warren Organic Chemistry, Oxford University Press, 2012 (ISBN 978-0-19-927029-3) [or Clayden, Greeves, Warren and Wothers: Organic Chemistry, Oxford University Press, 2001 (ISBN 0 19 850346 6)] and distributed material • Examination: oral exam, lab work (lab and workshop compulsory) After the course the student should be able to:" " • Describe basic stereochemical concepts • Describe principles for stereoselective synthesis, in particular for enantioselective synthesis • Explain the stereochemistry observed in chemical reactions • Suggest methods for stereoselective synthesis of simple organic compounds containing stereogenic elements • Identify suitable reagents for stereoselective transformations • Use retrosynthetic analysis for the construction of synthetic routes for simple organic compounds • Prepare organic compounds using advanced synthetic methodology Contents • Fundamental stereochemical concepts • Synthetic strategy and principles for stereoselective, in particular enantioselective, chemical transformations • Transition metal catalysis • Applications of frontier orbital theory • Retrosynthetic analysis • Advanced organic synthesis Marcellin Pierre Eugène Berthelot (1827 - 1907) " "La Chimie crée ses objets" “This is an important point: neither biology nor chemistry would be served best by a development in which all organic chemists would simply become biological such that, as a consequence, research at the core of organic chemistry and, therefore, progress in understanding the reactivity of organic molecules, would dry out. Progress at its core in understanding and reasoning in not only essential for organic chemistry itself, but for life sciences as a whole.
    [Show full text]
  • Screening of Macromolecular Cross-Linkers and Food-Grade Additives for Enhancement of Catalytic Performance of MNP-CLEA-Lipase of Hevea Brasiliensis
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP-CLEA-lipase of hevea brasiliensis To cite this article: Nur Amalin Ab Aziz Al Safi and Faridah Yusof 2020 IOP Conf. Ser.: Mater. Sci. Eng. 932 012019 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.226 on 23/09/2021 at 18:45 1st International Conference on Science, Engineering and Technology (ICSET) 2020 IOP Publishing IOP Conf. Series: Materials Science and Engineering 932 (2020) 012019 doi:10.1088/1757-899X/932/1/012019 Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP- CLEA-lipase of hevea brasiliensis. Nur Amalin Ab Aziz Al Safi1 and Faridah Yusof1 1 Department of Biotechnology Engineering, International Islamic University Malaysia. Abstract. Skim latex from Hevea brasiliensis (rubber tree) consist of many useful proteins and enzymes that can be utilized to produce value added products for industrial purposes. Lipase recovered from skim latex serum was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles for properties enhancement, termed ‘Magnetic Nanoparticles CLEA-lipase’ (MNP-CLEA-lipase). MNP-CLEA-lipase was prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetic nanoparticles. Instead of using glutaraldehyde as cross-linking agent, green, non-toxic and renewable macromolecular cross-linkers (dextran, chitosan, gum Arabic and pectin) were screened and the best alternative based on highest residual activity was chosen for further analysis.
    [Show full text]
  • Practical Aspects on How to Deracemize Atropizomers by Means of Crystallization Ryusei Oketani
    Practical aspects on how to deracemize atropizomers by means of crystallization Ryusei Oketani To cite this version: Ryusei Oketani. Practical aspects on how to deracemize atropizomers by means of crystallization. Organic chemistry. Normandie Université, 2019. English. NNT : 2019NORMR109. tel-02502796 HAL Id: tel-02502796 https://tel.archives-ouvertes.fr/tel-02502796 Submitted on 9 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité Chimie Préparée au sein de l’Université de Rouen Normandie Practical aspects on how to deracemize atropisomers by means of crystallization (Aspects pratiques de la déracémisation d'atropisomères par cristallisation) Présentée et soutenue par Ryusei OKETANI Thèse soutenue publiquement le 06 Décembre 2019 devant le jury composé de M. Alexander BREDIKHIN Pr FRC Kazan Scientific Center of RAS Rapporteur M. Joop Ter HORST Pr University of Strathclyde Rapporteur M. Gérard COQUEREL Pr Université de Rouen Normandie Président Mme. Sylvie FERLAY-CHARITAT Pr Université de Strasbourg Examinateur M. Pascal CARDINAEL Pr Université de Rouen Normandie Directeur de thèse Thèse dirigée par Pascal CARDINAEL professeur des universités et Co-encadrée par le Dr. Clément BRANDEL au laboratoire Sciences et Méthodes Séparatives (EA3233 SMS) Contents Contents Contents .........................................................................................................................
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Enzyme Supported Crystallization of Chiral Amino Acids
    ISBN 978-3-89336-715-3 40 Band /Volume Gesundheit /Health 40 Gesundheit Enzyme supported crystallization Health Kerstin Würges of chiral amino acids Mitglied der Helmholtz-Gemeinschaft Kerstin Würges Kerstin aminoacids Enzyme supported ofchiral crystallization Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences (IBG) Biotechnology (IBG-1) Enzyme supported crystallization of chiral amino acids Kerstin Würges Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 ISSN 1866-1785 ISBN 978-3-89336-715-3 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Publisher and Forschungszentrum Jülich GmbH Distributor: Zentralbibliothek 52425 Jülich Phone +49 (0) 24 61 61-53 68 · Fax +49 (0) 24 61 61-61 03 e-mail: [email protected] Internet: http://www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH Printer: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2011 Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 D 61 (Diss. Düsseldorf, Univ., 2011) ISSN 1866-1785 ISBN 978-3-89336-715-3 The complete volume ist freely available on the Internet on the Jülicher Open Access Server (JUWEL) at http://www.fz-juelich.de/zb/juwel Neither this book nor any part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • Download Author Version (PDF)
    Chemical Science Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemicalscience Page 1 of 4 PleaseChemical do not adjust Science margins Chemical Science EDGE ARTICLE Absolute Structure Determination of Compounds with Axial and Planar Chirality Using the Crystalline Sponge Method a a a b a Received 00th January 20xx, Shota Yoshioka, Yasuhide Inokuma, Manabu Hoshino, Takashi Sato, and Makoto Fujita* Accepted 00th January 20xx The absolute stereochemistry of compounds with axial and planar chirality is successfully determined by the crystalline DOI: 10.1039/x0xx00000x sponge method without crystallization or derivatization of the compounds. This method is applied to absolute structure determination in the asymmetric synthesis of unique compounds with axial and planar chirality.
    [Show full text]
  • Synthesis of Axially Chiral Biaryl Compounds by Asymmetric Catalytic Reactions with Transition Metals Pauline Loxq, E
    Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals Pauline Loxq, E. Manoury, Rinaldo Poli, Éric Deydier, A. Labande To cite this version: Pauline Loxq, E. Manoury, Rinaldo Poli, Éric Deydier, A. Labande. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coordination Chemistry Re- views, Elsevier, 2016, 308, Part 2, pp.131-190. 10.1016/j.ccr.2015.07.006. hal-01929757 HAL Id: hal-01929757 https://hal.archives-ouvertes.fr/hal-01929757 Submitted on 1 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals Pauline Loxq, a,b Eric Manoury,a,b Rinaldo Poli,a,b,c Eric Deydier a,b,d,* and Agnès Labande a,b,* a CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. b Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France. c Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France. d IUT A Paul Sabatier, Departement de Chimie, Avenue Georges Pompidou, CS 20258, F- 81104 Castres Cedex, France Dedicated to the memory of our colleague and friend Guy Lavigne (1947-2015).
    [Show full text]