Sep Temb Er 2010

Total Page:16

File Type:pdf, Size:1020Kb

Sep Temb Er 2010 Te Patiki – Palmerston North Astronomical Society Inc September 2010 September 2010 September Headliners The NEXT MEETING Spring on Titan brings will be at the Manawatu sunshine and patchy Observatory on Wednes- clouds day, September 29th, http://www.astronomy.com/asy/ at 8.00 p.m. default.aspx?c=a&id=10253 Jupiter’s Disappearing Belt Many of you who have http:// read Te Patiki over the www.oneminuteastronomer.com/2 010/09/09/jupiters-disappearing- years will no doubt realize belt/ that many of our members Possibility for White Dwarf specialize in deep-sky pho- Pulsars? http:// tography and are amongst www.universetoday.com/74300/ New Zealand’s leading white-dwarf-pulsars/ proponents of this field of In this issue: astronomy. The Big Wet before the Big Dry? There are however more The Planet Mercury has a strings to our bow than comet-like tail. astrophotography as you Google finds a new impact crater in Egypt will find out when you come along and listen to Weird water lurking inside giant planets our featured talk by one of our newer members, Awesome death spiral of a bizarre star Carl Knight, who now Above: Carl Knight with his pride and joy, a 12 lives on the rise just NW NASA to Send a Probe Into inch (30cm) Meade Cassegrain set up outside our the Sun of Bulls. observatory last year for an open night. Carl has Ancient Greeks spotted Hal- ley's comet since established himself at a dark sky site on the Carl will be speaking to us Mars moon may have rise north of Bulls heading towards Wanganui. formed like our own about his journey into, ―Variable Star Observ- The Beauty of a Barred Spi- ral ing.” The talk will cover curve – Visual, CCD meas- We hope to have another the HR Diagram and stellar The star photographers who urements and a visual frac- member’s talk about their captured the night sky evolution, types of variable tional estimation exercise. particular passion in as- stars and where they fit Earthquake Damages Some Organising your VS ob- tronomy soon. into the evolutionary pro- Canterbury Observatories serving – preparation and Ian Cooper. What’s The Use of Astrono- cess. UW Trianguli—an charts. Contact numbers my? international flap. A case Variable Star organisations. Most Massive Star Found (So study in international co- Variables to observe and President: Ian Cooper 329 7829 Far) operation. report on for next month. Secretary: Peter Wilde 358 4857 Light curves and what they Treasurer: George Ionas 358 7007 tell us. Getting the light Editor: Jeremy Moss 359 4498 Te Patiki – Palmerston North Astronomical Society Inc September 2010 THE BIG WET BEFORE THE BIG DRY? If you think that this rain we have been Palmerston North’s 10 most sunniest above list, but only just! This is not be- yond possibility with the advent of La having lately is a little over the top then years ranked. Niña starting during this spring. A La you aren’t mistaken! From the time of Niña phase of the S.O.I. (Southern Os- writing (and there is still 4.5 days left in cillation Index) is usually beneficial to September, this month is the 5th wet- Rank Year Sunshine Hours astronomers in the Manawatu region. test since records for Palmerston 1 1935 2013 North began in June 1928. There is still 2 1947 2003 On the following page I have included a a chance that this month may move up graph of the S.O.I. produced from Dar- the list, unfortunately. 3 1933 1982 win in the Northern Territory of Aus- tralia (originally called Palmerston by 4 1974 1972 the way). I have highlighted a number of 5 1950 1967 years that show up in the lists on this Below is a list of the wettest recorded page for interest and easier identifica- months for Palmerston North: 6 1948 1962 tion. 7 2003 1960 I started into active astronomy at the Rank Month/Year mm of rain 8 2008 1958 end of 1973. As can be seen from the 1 Feb 2004 303.4 9 2000 1951 graph this was the end of a deep El Ni- ño period. That spring was a typically 2 Jun 1947 265.1 10 1934 1948 nasty El Niño style spring, but fortu- 3 Jan 1953 247.2 nately there was an abrupt change to La Niña conditions in early January 4 Jul 1974 245.2 As far as sunshine is concerned 2010 is 1974 (the month I brought my first 5 Sep 2010 227.8 not a contender for the list above but telescope. Talk about timing Trev!) more likely it could be in the top 10 6 Oct 1935 224.9 cloudiest of years as measured by sun- As a rule of thumb my best years in 7 May 1948 224.1 shine totals. astronomy all feature above the line on the graph, i.e. they are during La Niña 8 Dec 1966 221.0 periods of the S.O.I. We are currently 9 Mar 1965 218.5 The 10 cloudiest years on record are; heading to a moderate to strong La Niña phase so don’t be surprised if the 10 Jun 1935 211.5 Rank Year Sunshine Hours weather patterns also change soon. Here is hoping any way. 1 1992 1341 Some more intersting facts that emerge 2 1980 1397 Some Background. from the meta data. 1935 features 3 1983 1432 twice on the list above so it is no sur- Why are "El-Niño" and prise that it is 2nd on the list for wet- 4 1979 1524 "La-Niña" so named? test years with a total of 1,351.9mm. 5 1942 1531 "El-Niño" is named after a Peruvian First on the list is also no surprise, 6 1991 1569 Christmas festival where the warming 2004 with 1,376mm. of the waters off Peru is said to occur 7 1953 1588 near the birthday of "The Boy" (El Ni- It is also intersting to note that no 8 1981 1608 ño), or the Christ child. Meteorologists years in the decades of the 1980’s thus named the phenomenon the "El- through the 1990’s (i.e. 1981-2000) had 9 1976 1628 Niño Southern Oscillation", or ENSO any months where the rainfall exceeded for short. The reverse phenomenon, 10 1929 1636 the cooling of the eastern Pacific wa- 200mm! ters, was at first called "Anti-El-Niño", It is very interesting to note that where until it was realised that this literally 2010 currently sits at 1,191 hours with 1935 really surprises is that it is top of meant the Anti-Christ ! To avoid this just on three months left. We would unfortunate connotation, it was re- our most sunniest of years too! need the next three months to average named "La-Niña" (or "The Girl"). around 150 hours each to avoid the Te Patiki – Palmerston North Astronomical Society Inc September 2010 Above: The La Niña years are the peaks above the zero line shown in blue, whilst the El Niño periods are the spikes below the line and shown in red The ENSO (El Niño Southern Oscilla- Yes it has been bad so far this year, but back at you. tion Index) is one of the main climate if we can get over this low of unfavour- drivers on the planet. Others include able conditions then we should all be the AMO (Atlantic Multidecadal Oscil- raring to go when the conditions are Ian Cooper. lation) which has a 60 year cycle that better soon. There is not better sight strongly mirrors global climate varia- for sore eyes than to see another tired tion. astronomer with eyelids half open and a satisfied grin on their face beaming Ostensibly the coming La Niña period Below: Out here in the New Lake District (temporarily anyway) widespread surface is expected to bring wetter weather to flooding was the order of the day. These paddocks on Main Drain Road were typical. the east coast of mainly the North Is- land but also to the South Island as well. Anti cyclones, or ‘highs,’ are ex- pected to lie to the centre or south of Cook Strait and therefore there is like- ly to be a predominance of winds from the eastern and southern quarters over central New Zealand. For west coasters on the L.N.I. (Lower North Island) and the South Island too this will mean drier, sunnier conditions (ergo, clearer night skies as well) should prevail based upon past experi- ence. Te Patiki – Palmerston North Astronomical Society Inc September 2010 The planet Mercury has a comet like tail Posted on September 22, 2010 by Anthony ROME and BOSTON – Scientists from meeting in Rome, Italy this week. Watts Boston University’s Center for Space Physics reported today that NASA sat- The STEREO mission has two space- http://wattsupwiththat.com/2010/09/22/the- planet-mercury-has-a-comet-like-tail/#more- ellites designed to view the escaping craft, in orbits just inside and outside 25201 atmosphere of the Sun have also rec- the earth’s orbit around the Sun, and Via Eurekalert: Mercury found to orded evidence of gas escaping from thus increasingly ahead and behind the have comet-like appearance by the planet Mercury. The scientists re- earth (STEREO, or Solar TErrestrial satellites looking at sun ported these findings at the European RElations Observatory, is the third Planetary Science Congress (EPSC) mission in NASA’s Solar Terrestrial Probes program). This configuration offers multi-directional views of the electrons and ions that make up the escaping solar wind.
Recommended publications
  • The Star Newsletter
    THE HOT STAR NEWSLETTER ? An electronic publication dedicated to A, B, O, Of, LBV and Wolf-Rayet stars and related phenomena in galaxies No. 41 June/July 1998 editor: Philippe Eenens http://www.astro.ugto.mx/∼eenens/hot/ [email protected] http://www.star.ucl.ac.uk/∼hsn/index.html Contents of this newsletter From the Editor . 1 Abstracts of 24 accepted papers . 2 Abstracts of 2 submitted paper . 16 Abstracts of 2 proceedings papers . 17 Book ......................................................................18 Meetings ...................................................................20 From the editor This issue covers two months of publications and is dominated by η Car, other LBVs and B[e] stars. Other papers tell us about massive stars in the Galactic Center and R136, OB stars, polarimetry, wind models and [WC] central stars of Planetary Nebulae. We also present a book and remind readers about future meetings: two special sessions during IAU symposium 193 in Mexico (on HD5980 and on the XMEGA campaign) as well as IAU colloquium 175 in Spain in June 1999 (on Be stars). 1 Accepted Papers On the Multiplicity of η Carinae Henny J.G.L.M. Lamers1,2, Mario Livio1, Nino Panagia1,3, & Nolan R. Walborn1 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute and SRON Laboratory for Space Research, Princetonplein 2, 3584CC Utrecht, The Netherlands 3 On assignment from the Astrophysics Division, Space Science Department of ESA. The nebula around the luminous blue variable η Car is extremely N-rich and C,O-poor, indicative of CNO-cycle products. On the other hand, the recent HST-GHRS observation of the nucleus of η Car shows the spectrum of a star with stellar-wind lines of C ii,C iv, Si ii, Si iv etc.
    [Show full text]
  • 1 I Articles Dans Des Revues Avec Comité De Lecture
    1 I Articles dans des revues avec comité de lecture (ACL) internationales II Articles dans des revues sans comité de lecture (SCL) NB : La liste des publications est donnée de façon exhautive par équipe, ce qui signifie qu’il existe des redondances chaque fois qu’une publication est cosignée pas des membres dépendant d’équipes différentes. Par contre, certains chercheurs sont à cheval sur deux équipes, dans ce cas il leur a été demandé de rattacher leurs publications seulement à l’une ou à l’autre équipe en fonction de la nature de la publication et la raison de leur rattachement à deux équipes. I Articles dans des revues avec comité de lecture (ACL) internationales ANNÉE 2006 A / Equipe « Physique des galaxies » 1. Aguilar, J.A. et al. (the ANTARES collaboration, 214 auteurs). First results of the Instrumentation Line for the deep- sea ANTARES neturino telescope Astroparticle Physic 26, 314 2. Auld, R.; Minchin, R. F.; Davies, J. I.; Catinella, B.; van Driel, W.; Henning, P. A.; Linder, S.; Momjian, E.; Muller, E.; O'Neil, K.; Boselli, A.; et 18 coauteurs. The Arecibo Galaxy Environment Survey: precursor observations of the NGC 628 group, 2006, MNRAS,.371,1617A 3. Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Buat, V.; Martin, D. C. The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569, 2006, ApJ, 651, 811B 4. Boselli, A.; Gavazzi, G. Environmental Effects on Late-Type Galaxies in Nearby Clusters -2006, PASP, 118, 517 5.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • A\St Ronomia B Oletín N° 46 La Plata, Buenos Aires, 2003
    A sociacion AJrgent ina de ~A\st ronomia Boletín N° 46 La Plata, Buenos Aires, 2003 AsociaciónArgentina, de Astronomía - Boletín 46 i Asociación Argentina de Astronomía Reunión Anual La Plata, Buenos Aires, 22 al 25 de septiembre Organizada por: Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata EDITORES Stella Maris Malaroda Silvia Mabel Galliani 2003 ISSN 0571^3285 AsociaciónArgentina, de Astronomía - Boletín 46 íi Asociación Argentina de Astronomía Fundada en 1958 Personería Jurídica 1421, Prov. de Buenos Aires Asociación Argentina de Astronomía - Boletín 46 iii Comisión Directiva Presidente: Dra. Marta Rovira Vicepresidente: Dr. Diego García Lambas Secretario: Dr. Andrés Piatti Tesorero: Dra. Cristina Cappa Vocal 1: Dr. Sergio Cellone Vocal 2: Dra. Lilia Patricia Bassino Vocal Sup. 1: Dra. Zulema González de López García Vocal Sup. 2: Lie. David Merlo Comisión Revisora de Cuentas Titulares: Dra. Mirta Mosconi Dra. Elsa Giacani Dra. Stella Malaroda Suplentes: Dra. Irene Vega Comité Nacional de Astronomía Secretario: Dr. Adrián Brunini Miembros: Dr. Diego García Lambas Dra. Olga Inés Pintado Lie. Roberto Claudio Gamen Lie. Guillermo Federico Hágele Asociación Argentina de Astronomía - Boletín 46 IV Comité Científico de la Reunión Dr. Roberto Aquilano Dr. Adrián Brunini Dr. Juan José Clariá Dra. Cristina Cappa Dr. Juan Carlos Forte (Presidente) Dr. Daniel Gómez Lie. Carlos López Dra. Stella Malaroda Dra. Mirta Mosconi Comité Organizador Local Lie. María Laura Arias Dr. Pablo Cincotta (Presidente) Lie. Roberto
    [Show full text]
  • Resolucion Hcd N° 67/00
    Universidad Nacional de Córdoba FACULTAD DE MATEMÁTICA ASTRONOMÍA Y FÍSICA UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Matemática, Astronomía y Física PROGRAMA DE CURSO DE POSGRADO TÍTULO: Propiedades astrofísicas de galaxias enanas: el Sistema Magallánico AÑO: 2018 CUATRIMESTRE: Segundo CARGA HORARIA: 60 hs. No. DE CRÉDITOS: CARRERA/S: Astronomía DOCENTE ENCARGADO: Andrés Eduardo Piatti PROGRAMA I. Estructura y dimensiones de las galaxias Descripción de diferentes indicadores de distancia. El clump de las gigantes rojas: justificación y uso como indicador de distancia. Conteos estelares: descripción de diferentes técnicas, utilización y alcance. Relevamientos fotométricos. Descripción de las estructuras observadas en las galaxias. Ajustes de perfiles de densidad estelar. Efectos de proyección espacial de las galaxias. II. El puente Magallánico y el Leading Arm Descripción de evidencias observacionales. Características. Trazabilidad del puente: diferentes indicadores. Dimensiones del puente. Poblaciones estelares: edad, metalicidad. Origen del puente. III. Dinámica de las galaxias Movimiento propio: procedimientos de medición y estimación de errores. Velocidades espaciales: cómputo y limitaciones. Descripción de algunos modelos teóricos de dinámica de galaxias. Comparación entre observaciones y modelos teóricos. Efectos de la dinámica de galaxia en la formación y evolución estelar de las mismas. IV. Los cúmulos estelares Diferentes catalogaciones. Catálogos actualizados. Propiedades globales de los sistemas de cúmulos estelares. Distribuciones de edad, metalicidad, y dimensiones de los sistemas de cúmulos estelares. Destrucción de cúmulos estelares. Taza de Universidad Nacional de Córdoba FACULTAD DE MATEMÁTICA ASTRONOMÍA Y FÍSICA formación de cúmulos. Los cúmulos más viejos. Los cúmulos más jóvenes. Fenómeno de cúmulos estelares con formación estelar múltiple. V. Abundancias metálicas Determinaciones espectroscópicas y fotométricas. Calibraciones de indicadores de metalicidad.
    [Show full text]
  • Study of Star Cluster Populations in the Magellanic Clouds Prasanta
    Study of star cluster populations in the Magellanic Clouds A thesis submitted for the degree of Doctor of Philosophy in The Department of Physics, Pondicherry University, Puducherry - 605 014, India by Prasanta Kumar Nayak Indian Institute of Astrophysics, Bangalore - 560 034, India August 2019 Study of star cluster populations in the Magellanic Clouds Prasanta Kumar Nayak Indian Institute of Astrophysics Indian Institute of Astrophysics Bangalore - 560 034, India Title of the thesis : Study of star cluster populations in the Magellanic Clouds Name of the author : Prasanta Kumar Nayak Address : Indian Institute of Astrophysics II Block, Koramangala Bangalore - 560 034, India Email : [email protected] Name of the supervisor : Prof. Annapurni Subramaniam Address : Indian Institute of Astrophysics II Block, Koramangala Bangalore - 560 034, India Email : [email protected] Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the in- vestigations carried out by me at the Indian Institute of Astrophysics, Bangalore, under the supervision of Prof. Annapurni Subramaniam. This work has not been submitted for the award of any other degree, diploma, associateship, fellowship, etc. of any other university or institute. Signed: Date: h Certificate This is to certify that the thesis titled `Study of star cluster populations in the Magellanic Clouds' submitted to the Pondicherry University by Mr. Prasanta Kumar Nayak for the award of the degree of Doctor of Philosophy, is based on the results of the investigations carried out by him under my supervision and guidance, at the Indian Institute of Astrophysics. This thesis has not been submitted for the award of any other degree, diploma, associateship, fellowship, etc.
    [Show full text]
  • INFRARED SURFACE BRIGHTNESS FLUCTUATIONS of MAGELLANIC STAR CLUSTERS1 Rosa A
    The Astrophysical Journal, 611:270–293, 2004 August 10 A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. INFRARED SURFACE BRIGHTNESS FLUCTUATIONS OF MAGELLANIC STAR CLUSTERS1 Rosa A. Gonza´lez Centro de Radioastronomı´a y Astrofı´sica, Universidad Nacional Autonoma de Me´xico, Campus Morelia, Michoaca´n CP 58190, Mexico; [email protected] Michael C. Liu Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822; [email protected] and Gustavo Bruzual A. Centro de Investigaciones de Astronomı´a, Apartado Postal 264, Me´rida 5101-A, Venezuela; [email protected] Received 2003 November 27; accepted 2004 April 16 ABSTRACT We present surface brightness fluctuations (SBFs) in the near-IR for 191 Magellanic star clusters available in the Second Incremental and All Sky Data releases of the Two Micron All Sky Survey (2MASS) and compare them with SBFs of Fornax Cluster galaxies and with predictions from stellar population models as well. We also construct color-magnitude diagrams (CMDs) for these clusters using the 2MASS Point Source Catalog (PSC). Our goals are twofold. The first is to provide an empirical calibration of near-IR SBFs, given that existing stellar population synthesis models are particularly discrepant in the near-IR. Second, whereas most previous SBF studies have focused on old, metal-rich populations, this is the first application to a system with such a wide range of ages (106 to more than 1010 yr, i.e., 4 orders of magnitude), at the same time that the clusters have a very narrow range of metallicities (Z 0:0006 0:01, i.e., 1 order of magnitude only).
    [Show full text]
  • IR Surface Brightness Fluctuations of Magellanic Star Clusters
    To appear in ApJ, NN. IR Surface Brightness Fluctuations of Magellanic Star Clusters1 Rosa A. Gonz´alez2 Centro de Radioastronom´ıa y Astrof´ısica, UNAM, Campus Morelia, Michoac´an, M´exico, C.P. 58190 Michael C. Liu3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 and Gustavo Bruzual A.4 Centro de Investigaciones de Astronom´ıa, Apartado Postal 264, M´erida 5101-A, Venezuela ABSTRACT We present surface brightness fluctuations (SBFs) in the near–IR for 191 Magellanic star clusters available in the Second Incremental and All Sky Data releases of the Two Micron All Sky Survey (2MASS), and compare them with SBFs of Fornax Cluster galaxies and with predictions from stellar population models as well. We also construct color–magnitude diagrams (CMDs) for these clusters using the 2MASS Point Source Catalog (PSC). Our goals are twofold. First, to provide an empirical calibration of near–IR SBFs, given that existing stellar population synthesis models are particularly discrepant in the near–IR. Second, whereas most previous SBF studies have focused on arXiv:astro-ph/0404362v2 5 May 2004 old, metal rich populations, this is the first application to a system with such a wide range of ages (∼ 106 to more than 1010 yr, i.e., 4 orders of magnitude), at the same time that the clusters have a very narrow range of metallicities (Z ∼ 0.0006 – 0.01, ie., 1 order of magnitude only). Since stellar population synthesis models predict a more complex sensitivity of SBFs to metallicity and age in the near–IR than in the optical, this analysis offers a unique way of disentangling the effects of age and metallicity.
    [Show full text]
  • Catalogue of Large Magellanic Cloud Star Clusters Observed in the Washington Photometric System
    A&A 586, A41 (2016) Astronomy DOI: 10.1051/0004-6361/201527305 & c ESO 2016 Astrophysics Catalogue of Large Magellanic Cloud star clusters observed in the Washington photometric system T. Palma1,2,3,L.V.Gramajo3, J. J. Clariá3,4, M. Lares3,4,5, D. Geisler6, and A. V. Ahumada3,4 1 Millennium Institute of Astrophysics, Nuncio Monseñor Sotero Sanz 100, Providencia, Santiago, Chile e-mail: [email protected] 2 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile 3 Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, 5000 Córdoba, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 5 Instituto de Astronomía Teórica y Experimental (IATE), 922 Laprida, Córdoba, Argentina 6 Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile Received 4 September 2015/Accepted 17 November 2015 ABSTRACT Aims. The main goal of this study is to compile a catalogue of the fundamental parameters of a complete sample of 277 star clusters (SCs) of the Large Magellanic Cloud (LMC) observed in the Washington photometric system. A set of 82 clusters was recently studied by our team. Methods. All the clusters’ parameters such as radii, deprojected distances, reddenings, ages, and metallicities were obtained by applying essentially the same procedures, which are briefly described here. We used empirical cumulative distribution functions to examine age, metallicity and deprojected distance distributions for different cluster subsamples of the catalogue. Results. Our new sample of 82 additional clusters represents about a 40% increase in the total number of LMC SCs observed to date in the Washington photometric system.
    [Show full text]
  • Washington Photometry of Five Star Clusters in the Large Magellanic
    A&A 501, 585–593 (2009) Astronomy DOI: 10.1051/0004-6361/200912223 & c ESO 2009 Astrophysics Washington photometry of five star clusters in the Large Magellanic Cloud A. E. Piatti1, D. Geisler2, A. Sarajedini3, and C. Gallart4 1 Instituto de Astronomía y Física del Espacio, CC 67, Suc. 28, 1428, Ciudad de Buenos Aires, Argentina e-mail: [email protected] 2 Grupo de Astronomía, Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile 3 Department of Astronomy, University of Florida, PO Box 112055, Gainesville, FL 32611, USA 4 Instituto de Astrofísica de Canarias, Calle Vía Lactea,´ 38200, La Laguna, Tenerife, Spain Received 28 March 2009 / Accepted 12 May 2009 ABSTRACT Aims. We present CCD photometry in the Washington system C and T1 passbands down to T1 ∼ 22.5 in the fields of NGC 1697, SL 133, NGC 1997, SL 663, and OHSC 28, five mostly unstudied star clusters in the LMC. Methods. Cluster radii were estimated from star counts in appropriate-sized boxes distributed throughout the entire observed fields. We perform a detailed analysis of the field star contamination and derive cluster colour-magnitude diagrams (CMDs). Based on the best fits of isochrones computed by the Padova group to the (T1, C − T1)CMDs,theδ(T1) index and the Standard Giant Branch procedure, we derive metallicities and ages for the five clusters. We combine our sample with clusters with ages and metallicities on a similar scale and examine relationships between position in the LMC, age and metallicity. Results. With the exception of NGC 1697 (age = 0.7 Gyr, [Fe/H] = 0.0 dex), the remaining four clusters are of intermediate-age (from 2.2 to 3.0 Gyr) and relatively metal-poor ([Fe/H] = –0.7 dex).
    [Show full text]
  • The Galaxy's Building Blocks
    STARS THE GALAXY’S BUILDING BLOCKS NASA, ESA CONTENTS 2 Secret lives of supermassive stars Take a look at how massive stars live, die, and leave their legacy on their surroundings. 8 Five stars that could go bang Visit the progenitors of the Milky Way’s next most likely supernovae. 14 The little stars that couldn’t Often called failed stars, brown dwarfs still harbor vital information about planet and star formation. 20 The hunt for stars’ hidden fingerprints Astronomers are looking to today’s stars for clues about star formation and evolution in the past. A supplement to Astronomy magazine Live fast, die young The Tarantula Nebula in the Large Magellanic Cloud holds hundreds of thousands of young stars. The star formation region at lower center, 30 Doradus, harbors the super star cluster R136, which contains the most massive star known. NASA/ESA/E. SABBI/STSCI Secret lives of supermassiveThe most massive stars stars burn through their material incredibly fast, die in fantastic explosions, and have long-lasting effects on their neighborhoods. by Yvette Cendes upermassive stars are the true rock stars of the uni- makes the cloud’s material begin to assemble. This new clump verse: They shine bright, live fast, and die young. attracts more and more gas and dust until it begins to collapse Defined as stars with masses a hundred times or more under its own weight to form an object known as a protostar. than that of our Sun, these stars can be millions of In the process, its gravitational energy converts to kinetic times more luminous than ours and burn through energy, which heats the protostar.
    [Show full text]
  • Evolution of X-Ray Emission from Young Massive Star Clusters
    Mon. Not. R. Astron. Soc. 000, 1–16 (2005) Printed 14 November 2018 (MN LATEX style file v2.2) Evolution of X-ray emission from young massive star clusters L. M. Oskinova⋆ Astrophysik, Univerit¨at Potsdam, Am Neuen Palais 10, Potsdam 14469, Germany Accepted . Received ; in original changedorm ABSTRACT The evolution of X-ray emission from young massive star clusters is modeled, taking into account the emission from the stars as well as from the cluster wind. It is shown that the level and character of the soft (0.2-10 keV) X-ray emission change drastically with cluster age and are tightly linked with stellar evolution. Using the modern X-ray observations of massive stars we show that the correlation between bolometric and X-ray luminosity known for single O stars also holds for O+O and O+Wolf-Rayet (WR) binaries. The diffuse emission originates from the cluster wind heated by the kinetic energy of stellar winds and supernova explosions. To model the evolution of the cluster wind, the mass and energy yields from a population synthesis are used as input to a hydrodynamic model. It is shown that in a very young clusters the emission from the cluster wind is low. When the cluster evolves, WR stars are formed. Their strong stellar winds power an increasing X-ray emission of the cluster wind. Subsequent supernova explosions pump the level of diffuse emission even higher. Clusters at this evolutionary stage may have no X-ray bright stellar point sources, but a relatively high level of diffuse emission. A supernova remnant may become a dominant X-ray source, but only for a short time interval of a few thousand years.
    [Show full text]