Streiff&Ndash;Francois Syndrome: Report of Four Cases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Study of Microphthalmia, Anophthalmia, and Coloboma (MAC
16 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.39.1.16 on 1 January 2002. Downloaded from National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology D Morrison, D FitzPatrick, I Hanson, K Williamson, V van Heyningen, B Fleck, I Jones, J Chalmers, H Campbell ............................................................................................................................. J Med Genet 2002;39:16–22 We report an epidemiological and genetic study attempting complete ascertainment of subjects with microphthalmia, anophthalmia, and coloboma (MAC) born in Scotland during a 16 year period beginning on 1 January 1981. A total of 198 cases were confirmed giving a minimum live birth preva- lence of 19 per 100 000. One hundred and twenty-two MAC cases (61.6%) from 115 different fami- See end of article for lies were clinically examined and detailed pregnancy, medical, and family histories obtained. A authors’ affiliations simple, rational, and apparently robust classification of the eye phenotype was developed based on ....................... the presence or absence of a defect in closure of the optic (choroidal) fissure. A total of 85/122 Correspondence to: (69.7%) of cases had optic fissure closure defects (OFCD), 12/122 (9.8%) had non-OFCD, and Dr D FitzPatrick, MRC 25/122 (20.5%) had defects that were unclassifiable owing to the severity of the corneal or anterior Human Genetics Unit, chamber abnormality. Segregation analysis assuming single and multiple incomplete ascertainment, Western General Hospital, respectively, returned a sib recurrence risk of 6% and 10% in the whole group and 8.1% and 13.3% Edinburgh EH4 2XU, UK; in the OFCD subgroup. -
Whole Exome Sequencing Gene Package Vision Disorders, Version 6.1, 31-1-2020
Whole Exome Sequencing Gene package Vision disorders, version 6.1, 31-1-2020 Technical information DNA was enriched using Agilent SureSelect DNA + SureSelect OneSeq 300kb CNV Backbone + Human All Exon V7 capture and paired-end sequenced on the Illumina platform (outsourced). The aim is to obtain 10 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate and non-unique reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA-MEM algorithm (reference: http://bio-bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x ABCA4 Cone-rod dystrophy 3, 604116 601691 94 100 100 97 Fundus flavimaculatus, 248200 {Macular degeneration, age-related, 2}, 153800 Retinal dystrophy, early-onset severe, 248200 Retinitis pigmentosa 19, 601718 Stargardt disease -
Ophthalmology
Ophthalmology Information for health professionals MEDICAL GENETIC TESTING FOR OPHTHALMOLOGY Recent technologies, in particularly Next Generation Sequencing (NGS), allows fast, accurate and valuable diagnostic tests. For Ophthalmology, CGC Genetics has an extensive list of medical genetic tests with clinical integration of results by our Medical Geneticists. 1. EXOME SEQUENCING: Exome Sequencing is a very efficient strategy to study most exons of a patient’s genome, unraveling mutations associated with specific disorders or phenotypes. With this diagnostic strategy, patients can be studied with a significantly reduced turnaround time and cost. CGC Genetics has available 2 options for Exome Sequencing: • Whole Exome Sequencing (WES), which analyzes the entire exome (about 20 000 genes); • Disease Exome by CGC Genetics, which analyzes about 6 000 clinically-relevant genes. Any of these can be performed in the index case or in a Trio. 2. NGS PANELS For NGS panels, several genes associated with the same phenotype are simultaneously sequenced. These panels provide increased diagnostic capability with a significantly reduced turnaround time and cost. CGC Genetics has several NGS panels for Ophthalmology that are constantly updated (www.cgcgenetics.com). Any gene studied in exome or NGS panel can also be individually sequenced and analyzed for deletion/duplication events. 3. EXPERTISE IN MEDICAL GENETICS CGC Genetics has Medical Geneticists specialized in genetic counseling for ophthalmological diseases who may advice in choosing the most appropriate -
A Case of Hallermann-Streiff Syndrome with Aphakia
Korean Journal of Pediatrics Vol. 51, No. 6, 2008 DOI : 10.3345/kjp.2008.51.6.646 Case report 1) A case of Hallermann-Streiff syndrome with aphakia Myung Chul Lee, M.D., Im Jeong Choi, M.D., and Jin Wha Jung, M.D. Department of Pediatrics, Maryknoll Medical Center, Busan, Korea = Abstract = Hallermann-Streiff syndrome is a rare disease. Approximately 150 cases have been reported, including 6 cases in Korea. The authors experienced a case of Hallermann-Streiff syndrome in a 6-year-old female with aphakia. The syndrome is charac- terized by a bird-like face, dental abnormalities, hypotrichosis, atrophy of the skin, bilateral microphthalmia, and proportionate dwarfism. A brief review of the literature was conducted. (Korean J Pediatr 2008;51 :646-649) Key Words : Hallermann-Streiff syndrome, Aphakia, Bird-like face age of 40 weeks and her mother’s obstetric history revealed Introduction no record of systemic disease or drug administration. Her parents and only brother showed no specific finding. On Hallermann-Streiff Syndrome is a rare genetic disorder admission, she was 5 years and 7 months old and her that is characterized by bird-like face, dental abnormalities, height was 83.2 cm (less than 3rd percentile) while her hypotrichosis, atrophy of skin, congenital cataracts, bilateral body weight was 13 kg (less than 3rd percentile), showing microphthalmia, and proportionate nanism. It was first pub- a growth disorder. She showed a developmental disorder lished by Aubry in 18931),butthecasewasincomplete.This showing unassisted self-ambulation at the age of 4 years. syndrome was first described completely in 1948 by She had a pointed nose and frontal bossing as well as Hallermann2) and then in 1950 by Streiff3). -
Orphanet Report Series Rare Diseases Collection
Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic -
Congenital Ocular Anomalies in Newborns: a Practical Atlas
www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected]. -
Ocular Colobomaâ
Eye (2021) 35:2086–2109 https://doi.org/10.1038/s41433-021-01501-5 REVIEW ARTICLE Ocular coloboma—a comprehensive review for the clinician 1,2,3 4 5 5 6 1,2,3,7 Gopal Lingam ● Alok C. Sen ● Vijaya Lingam ● Muna Bhende ● Tapas Ranjan Padhi ● Su Xinyi Received: 7 November 2020 / Revised: 9 February 2021 / Accepted: 1 March 2021 / Published online: 21 March 2021 © The Author(s) 2021. This article is published with open access Abstract Typical ocular coloboma is caused by defective closure of the embryonal fissure. The occurrence of coloboma can be sporadic, hereditary (known or unknown gene defects) or associated with chromosomal abnormalities. Ocular colobomata are more often associated with systemic abnormalities when caused by chromosomal abnormalities. The ocular manifestations vary widely. At one extreme, the eye is hardly recognisable and non-functional—having been compressed by an orbital cyst, while at the other, one finds minimalistic involvement that hardly affects the structure and function of the eye. In the fundus, the variability involves the size of the coloboma (anteroposterior and transverse extent) and the involvement of the optic disc and fovea. The visual acuity is affected when coloboma involves disc and fovea, or is complicated by occurrence of retinal detachment, choroidal neovascular membrane, cataract, amblyopia due to uncorrected refractive errors, etc. While the basic birth anomaly cannot be corrected, most of the complications listed above are correctable to a great 1234567890();,: 1234567890();,: extent. Current day surgical management of coloboma-related retinal detachments has evolved to yield consistently good results. Cataract surgery in these eyes can pose a challenge due to a combination of microphthalmos and relatively hard lenses, resulting in increased risk of intra-operative complications. -
Novel Mutations in ALDH1A3 Associated with Autosomal Recessive Anophthalmia/ Microphthalmia, and Review of the Literature Siying Lin1, Gaurav V
Lin et al. BMC Medical Genetics (2018) 19:160 https://doi.org/10.1186/s12881-018-0678-6 RESEARCH ARTICLE Open Access Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/ microphthalmia, and review of the literature Siying Lin1, Gaurav V. Harlalka1, Abdul Hameed2, Hadia Moattar Reham3, Muhammad Yasin3, Noor Muhammad3, Saadullah Khan3, Emma L. Baple1, Andrew H. Crosby1 and Shamim Saleha3* Abstract Background: Autosomal recessive anophthalmia and microphthalmia are rare developmental eye defects occurring during early fetal development. Syndromic and non-syndromic forms of anophthalmia and microphthalmia demonstrate extensive genetic and allelic heterogeneity. To date, disease mutations have been identified in 29 causative genes associated with anophthalmia and microphthalmia, with autosomal dominant, autosomal recessive and X-linked inheritance patterns described. Biallelic ALDH1A3 gene variants are the leading genetic causes of autosomal recessive anophthalmia and microphthalmia in countries with frequent parental consanguinity. Methods: This study describes genetic investigations in two consanguineous Pakistani families with a total of seven affected individuals with bilateral non-syndromic clinical anophthalmia. Results: Using whole exome and Sanger sequencing, we identified two novel homozygous ALDH1A3 sequence variants as likely responsible for the condition in each family; missense mutation [NM_000693.3:c.1240G > C, p. Gly414Arg; Chr15:101447332G > C (GRCh37)] in exon 11 (family 1), and, a frameshift mutation [NM_000693.3:c. 172dup, p.Glu58Glyfs*5; Chr15:101425544dup (GRCh37)] in exon 2 predicted to result in protein truncation (family 2). Conclusions: This study expands the molecular spectrum of pathogenic ALDH1A3 variants associated with anophthalmia and microphthalmia, and provides further insight of the key role of the ALDH1A3 in human eye development. -
MAC-ASD Panel 16-Apr-2018 Versie Centrum Voor Medische Genetica Gent (59 Genen)
H9.1-OP2-B15: Genpanel MAC-ASD, 16-Apr-2018, in voege op 23/04/2018 MAC-ASD panel 16-Apr-2018 versie Centrum voor Medische Genetica Gent (59 genen) OMIM gene Associated phenotype, OMIM phenotype ID, phenotype mapping Gene ID key and inheritance pattern [Blood group, Langereis system], 111600 (3); Dyschromatosis universalis hereditaria 3, 615402 (3), Autosomal dominant; Microphthalmia, isolated, ABCB6 605452 with coloboma 7, 614497 (3), Autosomal dominant; Pseudohyperkalemia, familial, 2, due to red cell leak, 609153 (3), Autosomal dominant Microcornea, myopic chorioretinal atrophy, and telecanthus, 615458 (3), ADAMTS18 607512 Autosomal recessive ALDH1A3 600463 Microphthalmia, isolated 8, 615113 (3), Autosomal recessive ASPH 600582 Traboulsi syndrome, 601552 (3), Autosomal recessive Persistent hyperplastic primary vitreous, autosomal recessive, 221900 (3), ATOH7 609875 Autosomal recessive B3GLCT 610308 Peters-plus syndrome, 261540 (3), Autosomal recessive BCOR 300485 Microphthalmia, syndromic 2, 300166 (3), X-linked dominant Microphthalmia, syndromic 6, 607932 (3), Autosomal dominant; Orofacial BMP4 112262 cleft 11, 600625 (3) BMP7 112267 No OMIM phenotype C12orf57 615140 Temtamy syndrome, 218340 (3), Autosomal recessive CHARGE syndrome, 214800 (3), Autosomal dominant; Hypogonadotropic CHD7 608892 hypogonadism 5 with or without anosmia, 612370 (3), Autosomal dominant Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps, 611773 (3), Autosomal dominant; Brain small vessel disease with or without ocular anomalies, 607595 -
British Journal of Ophthalmology January 1978 Vol. 62 No. 1 Br J Ophthalmol: First Published As on 1 January 1978
British Journal of Ophthalmology January 1978 Vol. 62 No. 1 Br J Ophthalmol: first published as on 1 January 1978. Downloaded from Contents Editorial: Small optic discs page 1 Maternal anticonvulsants and optic nerve hypoplasia CREIG S. HOYT and FRANK A. BILLSON page 3 Spectrum of optic nerve hypoplasia LARS FRISEN AND LARS HOLMEGAARD page 7 The tilted disc DAVID DORRELL page 16 Amblyopia resulting from penalisation: neurophysiological studies of kittens reared with atropinisation of one or both eyes HISAKO IKEDA and K. E. TREMAIN page 21 Pattern of amblyopia and fixation after keratoplasty G. SINGH and P. N. DAS page 29 Contrast threshold of random dot stereograms in anisometropic amblyopia: a clinical investigation I. C. J. WOOD, J. A. FOX, and M. G. STEPHENSON page 34 Posterior polymorphous keratopathy G. M. LIAKOS and T. A. CASEY page 39 http://bjo.bmj.com/ Histopathology of human superficial herpes simplex keratitis P. C. MAUDGAL and L. MISSOTTEN page 46 Histology of spheroidal degeneration of the cornea in Labrador GORDON J. JOHNSON and MARY OVERALL page 53 Keratitis from abuse of corneal anaesthetics HAROLD E. HENKES and THEODOR N. WAUBKE page 62 on October 4, 2021 by guest. Protected copyright. An illustration of an in-vivo corneal response to a soft lens presoaked in a non-isotonic solution A. J. KEMPSTER and J. R. LARKE page 66 Book reviews page 69 Obituary page 69 Correspondence page 70 Notes page 71 ASTM CODEN BJOPAL 62 (1) 1-72 (1978) ISSN 0007-1161 British Medical Association Tavistock Square London WC1H 9JR Br J Ophthalmol: first published as on 1 January 1978. -
Congenital Corneal Clouding: a Case Series
Case Series Congenital corneal clouding: A case series Sushma Malik1, Vinaya Manohar Lichade2, Shruti M Sajjan3, Prachi Shailesh Gandhi2, Darshana Babubhai Rathod4, Poonam Abhay Wade5 From 1Professor and Head, 2Assistant Professor, 3Resident, 4Associate Professor, Department of Pediatrics, 5Associate Professor, Department of Opthalmology, Topiwala National Medical College, B.Y.L.Ch. Nair Hospital, Mumbai, Maharashtra, India Correspondence to: Dr. Vinaya Manohar Lichade, Flat A14, Aanand Bhavan, Third Floor, Nair Hospital, Mumbai - 400 008, Maharashtra, India. E-mail: [email protected] Received - 18 February 2019 Initial Review - 11 March 2019 Accepted - 16 March 2019 ABSTRACT Congenital corneal clouding often causes diagnostic dilemma; hence, detailed evaluation and timely intervention are required to decrease the morbidity. Various genetic, developmental, metabolic, and idiopathic causes of congenital corneal clouding include Peters anomaly, sclerocornea, birth trauma, congenital glaucoma, mucopolysaccharidosis, and dermoids. We report a case series of four neonates with congenital corneal clouding admitted in our neonatal intensive care unit, over 5 years. Two cases were of Peters anomaly, one each of primary congenital glaucoma and glaucoma secondary to congenital rubella. Key words: Buphthalmos, Corneal clouding, Glaucoma, Peters anomaly he prevalence of congenital corneal opacities (CCO) is 5 years (Table 1). Two cases were of Peters anomaly, the third estimated to be 3 in 100,000 newborns. This number neonate was of primary congenital glaucoma, and the fourth Tincreases to 6 in 100,000, if congenital glaucoma patients are had glaucoma secondary to congenital rubella. The two cases included. Corneal opacifications of infancy are caused by several of Peters anomaly were siblings and the first case was a full- different disorders such as anterior segment dysgenesis disorders term female child with Peters Type 2 (Figs. -
UCLA Previously Published Works
UCLA UCLA Previously Published Works Title The interplay of genetics and surgery in ophthalmic care. Permalink https://escholarship.org/uc/item/7nj489hp Journal Seminars in ophthalmology, 10(4) ISSN 0882-0538 Author Gorin, MB Publication Date 1995-12-01 DOI 10.3109/08820539509063801 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Seminars in Ophthalmology ISSN: 0882-0538 (Print) 1744-5205 (Online) Journal homepage: http://www.tandfonline.com/loi/isio20 The Interplay of Genetics and Surgery in Ophthalmic Care Michael B. Gorin To cite this article: Michael B. Gorin (1995) The Interplay of Genetics and Surgery in Ophthalmic Care, Seminars in Ophthalmology, 10:4, 303-317, DOI: 10.3109/08820539509063801 To link to this article: http://dx.doi.org/10.3109/08820539509063801 Published online: 02 Jul 2009. Submit your article to this journal Article views: 9 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=isio20 Download by: [UCLA Library] Date: 02 May 2017, At: 14:05 The Interplay of Genetics and Surgery in Ophthalmic Care Michael 6. Gorin LTHOUGH ONLY a minor component of dures. Genetic conditions that affect the eye A the surgical volume of ophthalmic care, directly may also affect the surgicaI outcomes of genetic disorders are among the most challeng- routine procedures. The coexistence of Fuch’s ing cases for the ophthalmic surgeon. Ophthal- endothelial dystrophy in patients undergoing mic surgery may be indicated to address specific routine cataract extraction can contribute to aspects of heritable disorders that involve the postoperative corneal edema.