Form Summary

Total Page:16

File Type:pdf, Size:1020Kb

Form Summary U.S. FISH AND WILDLIFE SERVICE SPECIES ASSESSMENT AND LISTING PRIORITY ASSIGNMENT FORM Scientific Name: Ambrysus funebris Common Name: Nevares Spring naucorid bug Lead region: Region 8 (Pacific Southwest) Information current as of: May 29, 2015 Status/Action ___ Funding provided for a proposed rule. Assessment not updated. ___ Species Assessment - determined species did not meet the definition of the endangered or threatened under the Act and, therefore, was not elevated to the Candidate status. ___ New Candidate ___ Continuing Candidate X Candidate Removal X Taxon is more abundant or widespread than previously believed or not subject to the degree of threats sufficient to warrant issuance of a proposed listing or continuance of candidate status ___ Taxon not subject to the degree of threats sufficient to warrant issuance of a proposed listing or continuance of candidate status due, in part or totally, to conservation efforts that remove or reduce the threats to the species ___ Range is no longer a U.S. territory ___ Insufficient information exists on biological vulnerability and threats to support listing ___ Taxon mistakenly included in past notice of review ___ Taxon does not meet the definition of "species" ___ Taxon believed to be extinct 1 Petition Information X Non-Petitioned (Service added species to Candidate List in 2004) (69 FR 24880; May 4, 2004) ___ Petitioned 90-Day Positive: 12 Month Positive: Did the Petition request a reclassification? For Petitioned Candidate species: Is the listing warranted (if yes, see summary threats below) To Date, has publication of the proposal to list been precluded by other higher priority listing? Explanation of why precluded: Historical States/Territories/Countries of Occurrence: • States/US Territories: California • US Counties: Inyo County • Countries: United States Current States/Counties/Territories/Countries of Occurrence: • States/US Territories: California • US Counties: Inyo County • Countries: United States Land Ownership: All occurrences of the Nevares Spring naucorid bug are on Federal lands within Death Valley National Park. Lead Region Contact: LEAD REGION CONTACT: Arnold Roessler, 916-414-6613, [email protected] 2 Lead Field Office Contact: Carlsbad Fish and Wildlife Office, Betty Grizzle, 760-431-9440, [email protected] Biological Information Species Description: Ambrysus funebris was first described from Cow Creek in Death Valley, California, by La Rivers in 1948 (La Rivers 1948, entire). Ambrysus funebris is approximately 6.0 to 6.5 millimeters (mm) (0.24 to 0.26 inches (in) long and 3.5 mm (0.14 in) wide (La Rivers 1948, p. 103). No other naucorids have been collected or reported from the Death Valley spring complexes. The naucorids have raptorial front legs and dorsoventrally (front-to-back) flattened bodies (Menke 1979, p. 15). The Ambrysus genus within the family Naucoridae is distinguished by the following features: (1) deeply concave anterior (top) pronotal margins (referring to the pronotum, or the plate-like structure that covers the thorax), (2) with platelike propleura (referring to the cuticle of the first thoracic segment or prothorax) over the posterior (bottom) part of the prosternum (the under surface of the prothorax), and (3) densely pubescent venter (referring to the lower part of the abdomen) (Polhemus 1979, p. 134). Ambrysus funebris is the smallest naucorid in California and is distinguished from other Ambrysus species by its absence of a male genital process and the shape of the female subgenital plate (Polhemus 1979, pp. 135, 138, see Figures 259 and 265). The dorsal surface of the A. funebris is lighter anteriorly than posteriorly, unmottled, and shiny with a ventral surface that is deep yellowish in color, and darkened in the center (La Rivers 1948, p. 108). A more detailed narrative description of the adult form is found in La Rivers (1948, pp. 103–106); its developmental larval stages (nymphal instars) are described and illustrated in detail in Whiteman and Sites (2008, pp. 505–507, Figure A1). Ambrysus funebris is also unique in that its reduced hindwing has no costal (leading edge of wing) cell, which is found in other Ambrysus species of the United States and Mexico (La Rivers 1953, p. 91). Taxonomy: Ambrysus funebris belongs to the insect family Naucoridae, which is found within one of five superfamilies (Naucoroidea) in the infraorder Nepomorpha, or true water bugs, within the suborder Heteroptera (Class Insecta: Order Hemiptera) (Menke 1979, pp. 13–14). Ambrysus funebris is recognized as a valid and current taxonomic entity according to the Integrated Taxonomic Information System (retrieved March 3, 2015, from the Integrated Taxonomic Information System on-line database, www.itis.gov). We have reviewed the available taxonomic information and conclude the species is a valid taxon. 3 Life History: Ambrysus funebris has short hindwings and is flightless (Polhemus 1979, p. 138). Its mode of dispersal is unknown, but the species is described as an agile and adept crawler searching for prey within stream beds, and can swim well in calm water (La Rivers 1951, p. 285). They are defenseless when molting and thus susceptible to predation from predators such as damselfly larvae during this time of their life history (Usinger 1968, p. 199). The aquatic Hemiptera generally overwinter as adults, lay eggs in the spring, and develop during the summer months, with five nymphal instars (Usinger 1968, p. 185). The naucorids, including the Ambrysus genera, attach (glue) their eggs to various underwater objects (Menke 1979, p. 5); La Rivers 1951, p. 288). Eggs are creamy white-beige in color, approximately 1.04 mm (0.04 in) long and 0.38 mm (0.015 in) wide, elongated, with rounded asymmetrical ends (Sites and Nichols 1999, p. 3). The outer surface of the egg (or chorion) has a surface pattern of pentagonal to heptagonal units, separated by distinctly raised lines (Sites and Nichols 1999, pp. 3-4). The aquatic and subaquatic Hemiptera are considered to be intermediate stage predators in the food chains within their respective aquatic communities (Menke 1979, p. 2). Naucorid bugs are known to feed on a wide variety of organisms (Polhemus 1979, p. 131). They are “true” water bugs that propel themselves through water with oarlike movements of the middle and hindlegs, which are modified for swimming (Menke 1979, p. 8; Polhemus 1979, p. 131). The naucorid bugs breathe through their cuticle as nymphs and through spiracles in contact with air as adults, replenishing their subsurface air bubble by breaking the surface film with the top of their abdomen (Polhemus 1979, p. 132). Habitat: Physical Setting Ambrysus funebris is considered a thermal endemic aquatic invertebrate and is found only within areas of the Nevares and Travertine Springs and in Furnace Creek Wash within Death Valley National Park. These two springs are located entirely within Death Valley National Park and managed by the National Park Service (NPS) (see Figure 1). Land use within the springs and Furnace Creek area includes NPS lands (including residential, headquarters, and visitor facilities), privately operated visitor lodging and recreational facilities at Furnace Creek Ranch and Inn, owned and operated by Xanterra Parks and Resorts (Xanterra), a private corporation, and Timbisha Shoshone Tribe trust lands. Death Valley is considered the warmest and driest part of the United States given its elevation and geographic location (NPS 2006a, p. B-1). Its climate is characterized by low humidity, high summer temperatures, high winds during the spring months, high evaporation, and low rainfall (Roof and Callagan 2003, pp. 1725, 1734). Rainfall in the basin varies greatly from year-to-year, and 10- to 20-year intervals of relative dryness or wetness have been described for the Furnace Creek area, generally following the Pacific decadal oscillation of sea surface temperature in the Pacific Ocean (Roof and Callagan 2003, p. 1735). Annual precipitation, measured at Furnace Creek from 1911 to 2002, ranged from 0 to 11.76 cm (0 to 4.63 in), with an annual average of 4 4.8 cm (1.9 in) (Roof and Callagan 2003, p. 1734). There are two distinct precipitation patterns in the region—in winter (December–February), rainfall is generally low in intensity, but long in duration, while summer rains (July–September), from localized thunderstorms, are of a higher intensity, but shorter duration, and primarily result from monsoonal flows (northward flux of tropical air) from the south (e.g., Gulf of California) (Belcher and Sweetkind (eds.) 2010, p. 9). Winter storms and localized summer thunderstorm events can produce several inches of rain over a few days or few hours in the case of summer rains, and they can cause significant flash floods. These flood events can produce channel down cutting and local erosion in desert canyons, washes and streams (NPS 2006a, pp. III-14, III-74). Figure 1. Location of Furnace Creek Springs, Death Valley National Park, California. 5 The Furnace Creek Springs, which includes Nevares and Travertine Springs as well as Texas Spring, represent large volume springs that are discharge points of a regional interbasin flow (Belcher et al. 2009, p. 34). This regional flow system, which includes the southern portion of the Great Basin groundwater flow system including Death Valley National Park, is described in detail in a comprehensive U.S. Geological Survey Professional Paper, Death Valley Regional Groundwater Flow System, Nevada and California—Hydrogeologic Framework and Transient Groundwater Flow Model (Belcher and Sweetkind (eds.) 2010, entire). In general, this regional flow system conveys groundwater to the Furnace Creek Springs through the carbonate rocks found in the southeast portion of the Funeral Mountains (Belcher et al. 2009, pp. 34–35). The Furnace Creek Springs were captured and diverted as early as the mid-1880s by early settlers for drinking water, mining operations, and for irrigation because of their general potability (Thomas 2006, pp. 6–7). Hershey et al.
Recommended publications
  • Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan
    Journal of Bioresource Management Volume 5 Issue 1 Article 1 Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan Muhammad Shahbaz Chattha Women University Azad Jammu & Kashmir, Bagh (AJK), [email protected] Abu Ul Hassan Faiz Women University of Azad Jammu & Kashmir, Bagh (AJK), [email protected] Arshad Javid University of Veterinary & Animal Sciences, Lahore, [email protected] Irfan Baboo Cholistan University of Veterinary & Animal Sciences, Bahawalpur, [email protected] Inayat Ullah Malik The University of Lakki Marwat, Lakki Marwat, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Entomology Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Chattha, M. S., Faiz, A. H., Javid, A., Baboo, I., & Malik, I. U. (2018). Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan, Journal of Bioresource Management, 5 (1). DOI: https://doi.org/10.35691/JBM.8102.0081 ISSN: 2309-3854 online (Received: May 16, 2019; Accepted: Sep 19, 2019; Published: Jan 1, 2018) This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited.
    [Show full text]
  • Lundiana 8-1 2007.P65
    Lundiana 8(1):9-12, 2007 © 2007 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Notas sobre Naucoroidea (Hemiptera: Naucoridae). 3ra. Serie. Estudios con microscopio electrónico de barrido: corion de los huevos de Ambrysus (Ambrysus) attenuatus Montandon, Ambrysus (Ambrysus) acutangulus Montandon y Ambrysus (Ambrysus) stali La Rivers Mónica L. López Ruf División Científica de Entomología, Museo de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina. E-mail: [email protected] Abstract Notes on Naucoroidea (Insecta: Heteroptera). 3rd. Series. Scanning electron microscopy studies: the chorion of the eggs of Ambrysus (A.) attenuatus Montandon, A. (A.) acutangulus Montandon and A. (A.) stali La Rivers. Chorionic sculpturing differs interespecifically in Ambrysus Stål. The eggs of three species were examined with scanning electron microscopy, described and illustrated. Different patterns on the chorion were found in the three species. In A. acutangulus and A. stali, a rounded area with different pattern appears at the anterior pole and the design disappears near the micropyla. In A. attenuatus the pattern is uniform on the surface. Keywords: Heteroptera, Naucoridae, morphology, eggs, chorion. Introducción Material y métodos El corion de los huevos de las Naucoridae no se ha descripto Los huevos fueron obtenidos de los oviductos de hembras tradicionalmente debido, quizás, a que sus tramas superficiales colectadas en una campaña a finales de la primavera, en el se encuentran en el límite de resolución de los microscopios Parque Provincial Salto Encantado del Valle del Cuñá Pirú estereoscópicos y son opacos para los microscopios ópticos. El (Provincia de Misiones). Debido a la época, las hembras de MEB brinda la posibilidad de observarlos con claridad.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • OCHTEROIDEA La Superfamilia Ochteroidea, Incluida En El Infraorden Nepomorpha, Comprende Las Familias Ochteridae Y Gelastocoridae
    | 341 Resumen OCHTEROIDEA La superfamilia Ochteroidea, incluida en el infraorden Nepomorpha, comprende las familias Ochteridae y Gelastocoridae. Ambas familias están presentes en todas las regiones biogeográficas del mundo, aunque tienen mayor diversidad y abundancia en las regiones tropicales. Hasta el momento para la Argentina se han citado tres géneros y 10 especies de Gelastocoridae, y una especie de Ochteridae. Se actualiza el estado de conocimiento de sus características morfológicas, bio- logía e historia taxonómica. Se presentan claves para la identificación de las subfamilias de Gelastocoridae y los géneros de Ochteridae, diagnosis de los géneros, la lista de especies y su distribución geográfica en la Argentina. Abstract The superfamily Ochteroidea, included in the in- fraorder Nepomorpha, is comprised of the families Ochteridae and Gelastocoridae. Both of them are present in all biogeographic regions, although they are more abundant and diverse in the tropics. Up to now, three genera and 10 species of Gelastocoridae and a single one of Ochteridae have been recorded from Argentina. I provide an account of the state of knowledge of the morphology, biology and taxonomic history of both families. I present a key to the subfa- María Cecilia MELO milies of Gelastocoridae and genera of Ochteridae, diagnoses of all genera mentioned, and a list of the División Entomología, Museo de La Plata. CONICET. species recorded in Argentina with their geographic Paseo del Bosque, 1900 La Plata, Argentina distribution. [email protected] Introducción La superfamilia Ochteroidea (Hemiptera, Heteroptera, Nepomorpha) se encuentra conformada por las familias de “orilleros” Ochteridae y Gelastocoridae, típicas habitantes de las riberas de cuerpos de agua dulce (Hebsgaard et al., 2004).
    [Show full text]
  • Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me.
    [Show full text]
  • Taxonomic Overview of the Family Naucoridae (Heteroptera: Nepomorpha) in Mexico
    Dugesiana 26(1): ISSN 1405-4094 (edición impresa) Fecha de publicación: 2019 ISSN 2007-9133 (edición online) ©Universidad de Guadalajara Taxonomic overview of the family Naucoridae (Heteroptera: Nepomorpha) in Mexico Sinopsis de la familia Naucoridae (Heteroptera: Nepomorpha) en México Daniel Reynoso-Velasco1* and Robert W. Sites2 1Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91070, MÉXICO. E-mail: [email protected]; 2Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, U.S.A. E-mail: sitesr@missouri. edu. *Corresponding author. ABSTRACT The state of taxonomy of the Mexican fauna of the family Naucoridae is summarized and is fairly complete as a result of recent research. Currently, 71 species from six genera and four subfamilies have been recorded from the country. Species richness is distributed in the subfamilies Cryphocricinae: Ambrysus Stål (53), Cataractocoris Usinger (3), Cryphocricos Signoret (2); Laccocorinae: Interocoris La Rivers (1); Limnocorinae: Limnocoris Stål (10); and Naucorinae: Pelocoris Stål (2). Recent works have focused on the fauna of the genus Ambrysus. Additionally, studies are required for the genera Cryphocricos and Pelocoris, while a taxonomic revision of the genus Limnocoris is close to completion. A key to the subfamilies and genera of Naucoridae from Mexico is provided. Key words: distribution, aquatic insects, Hemiptera, North America. RESUMEN Se resume el conocimiento taxonómico de la fauna Mexicana de la familia Naucoridae, el cual es bastante completo debido a estudios recientes. Actualmente se encuentran registradas para el país 71 species pertenecientes a seis géneros y cuatro subfamilias.
    [Show full text]
  • San Marcos Springs/River Ecosystem
    HABITAT CONSERVATION PLAN BIOLOGICAL MONITORING PROGRAM San Marcos Springs/River Ecosystem ANNUAL REPORT December 2020 Prepared for: Prepared by: Edwards Aquifer Authority BIO-WEST, Inc. 900 East Quincy 1812 Central Commerce Court San Antonio, Texas 78215 Round Rock, Texas 78664 Table of Contents INTRODUCTION .......................................................................................................................... 1 METHODS ..................................................................................................................................... 2 Study Location ............................................................................................................................ 2 Sampling Strategy ....................................................................................................................... 2 San Marcos River Discharge ....................................................................................................... 6 Water Temperature ...................................................................................................................... 6 Aquatic Vegetation Mapping ...................................................................................................... 6 Texas Wild-Rice Annual Observations ....................................................................................... 7 Texas Wild-Rice Mapping....................................................................................................... 7 Texas Wild-Rice Physical Observations ................................................................................
    [Show full text]
  • Desert Aquatic Ecosystems and the Genetic and Morphological Diversity of Death Valley System Speckled Dace
    American Fisheries Society Symposium 17:350-359, 1995 © Copyright by the American Fisheries Society 1995 Desert Aquatic Ecosystems and the Genetic and Morphological Diversity of Death Valley System Speckled Dace DONALD W. SADA Environmental Studies Program, University of Nevada-Las Vegas 2689 Highland Drive, Bishop, California 93514, USA HUGH B. BRITTEN AND PETER F. BRUSSARD Biodiversity Research Center, Department of Biology, University of Nevada Reno, Nevada 89557-0015, USA Abstract.—The morphological and genetic diversities of fishes in North American deserts have been examined to estimate evolutionary rates, to create models of interbasin pluvial connectivity, and to justify protection of aquatic ecosystems throughout the region. Morphological and genetic studies comparing 13 populations of speckled dace Rhinichthys osculus from the Death Valley system, Lahontan basin, and lower Colorado River were conducted to quantify differences among populations. Differences in meristic and mensural characteristics among populations were highly significant, but differences in body shape were slight and best explained as representing two forms, one deep-bodied and short, the other elongate and slender. Starch gel electrophoretic assays of 23 loci showed isolated populations to be genetically unique. Fifty-nine taxa are identified as endemic to wetland and aquatic habitats in the Death Valley system: 16 forms of fish, 1 amphibian, 22 mollusks, 7 aquatic insects, 3 mammals, and 10 forms of flowering plants. Genetic and morphological differentiation of isolated speckled dace populations and the diversity and number of endemic forms associated with wetlands and aquatic habitats in the Death Valley system suggest that each desert wetland community functions as an evolutionarily significant unit.
    [Show full text]
  • USFWS National Wildlife Refuge Lands and Fish Hatcheries
    Final Environmental Assessment Rangeland Grasshopper and Mormon Cricket Suppression Program Churchill, Humboldt, Pershing, and Washoe Counties, Nevada EA Number: NV-01-20 Prepared by: Animal and Plant Health Inspection Service Plant Protection and Quarantine 8775 Technology Way Reno, NV 89521 May 27, 2020 1 Table of Contents I. Need for Proposed Action ...................................................................................................... 5 A. Purpose and Need Statement .............................................................................................. 5 B. Background Discussion ...................................................................................................... 6 C. About This Process ............................................................................................................. 8 II. Alternatives ............................................................................................................................ 8 A. No Action Alternative ....................................................................................................... 10 B. Insecticide Applications at Conventional Rates or Reduced Agent Area Treatments with Adaptive Management Strategy (Preferred Alternative) ........................................................ 10 III. Affected Environment .......................................................................................................... 12 A. Description of Affected Environment ..............................................................................
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Aquatic Insects and Their Potential to Contribute to the Diet of the Globally Expanding Human Population
    insects Review Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population D. Dudley Williams 1,* and Siân S. Williams 2 1 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada 2 The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK; [email protected] * Correspondence: [email protected] Academic Editors: Kerry Wilkinson and Heather Bray Received: 28 April 2017; Accepted: 19 July 2017; Published: 21 July 2017 Abstract: Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Keywords: aquatic insects; entomophagy; human diet; animal feed; life histories; environmental requirements 1. Introduction Entomophagy (from the Greek ‘entoma’, meaning ‘insects’ and ‘phagein’, meaning ‘to eat’) is a trait that we Homo sapiens have inherited from our early hominid ancestors.
    [Show full text]