Regional hydromorphological characterization with continuous and automated remote sensing analysis based on VHR imagery and low-resolution LiDAR data L. Demarchi 1, 2, S. Bizzi1, 3, H. Piégay4 1 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, Via E. Fermi 2749, I-21027 Ispra, VA, Italy; 2 Department of Hydraulic Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, Warsaw, Poland;
[email protected]; 3 Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, Milano, Italy;
[email protected] University of Lyon, UMR 5600 CNRS EVS, ISIG platform, Site ENS de Lyon, 15 Parvis René Descartes, F-69362 Lyon, France;
[email protected] Corresponding author:
[email protected] Keywords VHR and LiDAR data; object-based classification; regional scale; hydromorphological characterization. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/esp.4092 This article is protected by copyright. All rights reserved. Abstract Recent developments in Remote Sensing (RS) technologies lead the way in characterizing river morphology at regional scales and inferring potential channel responses to human pressures. In this paper, a unique regional database of continuous hydromorphological variables (HyMo DB) based on areal and topographic data has been generated from RS analysis. Key riverscape units with specific geomorphic meaning have been automatically mapped for 1700 km2 of river floodplains from simultaneous very-high-resolution (VHR) near-infrared aerial imagery and low-resolution LiDAR-derived products.