Mccallum, Monica – Imaging the Microbial Community of the Marine

Total Page:16

File Type:pdf, Size:1020Kb

Mccallum, Monica – Imaging the Microbial Community of the Marine Microbial Diversity Course Marine Biological Laboratory July 8 to August 22, 2018 Imaging the Microbial Community of the Marine Sponge Clathria prolifera Monica E. McCallum, Ph.D. Department of Chemistry and Chemical Biology Harvard University BACKGROUND Marine sponges are prolific producers of biologically active compounds and are particularly valued as sources of novel antibiotics and chemotherapeutics. The sponges themselves provide housing and nutrients for a complex microbial community that accounts for approximately 40% of any sponge’s mass and likely produces these complex bioactive natural products.1 However, the cultivation of these microbial symbionts, which would facilitate the study of their biosynthetic capabilities, has proven to be immensely challenging. Understanding the niche of microbial species within the sponge microbiome may help facilitate culturing of these organisms away from their sponge host for further study. In the early 2000s, three successive MBL Microbial Diversity students attempted to interrogate the microbial populations of three different local sponge species.2 The first was conducted by Dovi Kelman in 2001 on the local sponge Suberites ficus. Two years later, Gil Zeidner profiled the microbial community of the local sponge Holichondria sp. and was able to detect archaea using FISH microscopy with the ARCH915 probe.2b Kou-San Ju constructed a small 16s rDNA library of Clathria prolifera using universal Eubacterial primers 9F and 1492.2c Subsequent cloning into E. coli and sequencing led to the identification of 42 unique species across 14 types of bacteria, but no mention was made of any archaea present. Clathria prolifera, which is commonly known as the Red Beard Sponge, is available from the MBL MRC and has been studied extensively as a model organism for instruction in biology and environmental science, but its microbiome has been minimally surveyed.3 The microbiomes of other marine sponges have been extensively catalogued by the Sponge Micrbiome Project.4 However, little is known of the archaeal symbionts of marine sponges, though sequences corresponding to ammonia oxidizing archaea are frequently reported in sponge metagenomic studies. DeLong and coworkers described the first symbiotic association of a sponge (Axinella mexicana) and archaeon (Cenarchaeum symbiosum) in 1996.5 A decade later, DeLong and coworkers reported the first genomic analysis of C. symbiosum, but to date that organism remains uncultivated.6 The first marine crenarchaeon to be isolated in pure culture was a free- living autotrophic ammonia-oxidizer,7 but the subsequent cultivation of additional ammonia oxidizing archaea from marine environments has been limited. Sponges are important to nutrient and nitrogen cycling in the ocean, but the bacteria and archaea within these sponges may be responsible for the majority of nitrogen flux. Ammonia oxidizing archaea (AOAs) and bacteria (AOBs) have been found in a diverse array of sponges throughout the Earth’s oceans via 16S sequencing and via PCR amplification of the ammonia monooxygenase subunit A (amoA).8,9,10 Cultivation of an AOA, or any archaeon, from a sponge has yet to be reported. This miniproject aimed to use a variety of microscopy techniques to determine where different microbes reside within the sponge host C. prolifera and to attempt to enrich ammonia oxidizing archaea from C. prolifera. RESULTS AND DISCUSSION The marine sponge C. prolifera is a Demosponge with a skeleton made of spongin spicules that grows in shallow fast-flowing water along the coast of Falmouth, MA. The branching structure of C. prolifera provided easily accessible portions of sponge tissue for repeated sampling with minimal trauma to the sponge (Fig. 1a). The sponge tissue was homogenized via bead beating (Fig. 1b-c, d-e) and used to inoculate enrichment cultures containing minimal medium tailored to cultivate chemolithoautotrophic ammonia oxidizing archaea and bacteria. Growth of ammonia oxidizers was monitored using the colorimetric Griess test to observe the nitrite produced by this metabolism. After two weeks, none of the enrichment cultures had ever tested positive for nitrite and only a single tube of this enrichment showed visible growth (Fig. 1f). Figure 1. (a) the marine sponge Clathria prolifera (b) excised live sponge tissue (c) homogenized live sponge tissue (d) excised dead sponge tissue (e) homogenized dead sponge tissue (f) biofilm growing on enrichment culture after 14 days. The sample of C. prolifera contained two distinct regions of tissue: bright orange, live sponge tissue (Fig. 1b) and brown, dead tissue (Fig. 1d). Under differential interference contrast (DIC) light microscopy, these two tissues had distinct morphological features (Fig. 2). The live tissue consisted primarily of round sponge tissue cells interspersed with the spongin spicules that provide structural support in the sponge. The dead tissue contained few intact sponge tissue cells and was dominated by large, fast-moving microbes with spiral morphology and a variety of amoeba and ciliates. Figure 2. DIC images of live sponge tissue (left) and dead sponge tissue (right) at 40x magnification. After observing the sponge tissues under light microscopy, a series of observations were made using fluorescence microscopy. From this, it was determined that the sponge tissue and its microbial inhabitants exhibit bright autofluorescence under every filter cube set available on the Zeiss microscope (Fig. 3). Both the live sponge tissue and the dead sponge tissue exhibited autofluorescence, though it appeared to be qualitatively less in the dead sponge tissue. Figure 3. Autofluorescence of (a) live sponge tissue homogenate (b) dead sponge tissue homogenate. Labels in top left indicate filter cube used to acquire the image – no fluorescent probes were added. In hopes of overcoming the inherent autofluorescence of the sponge tissue to image its microbial symbionts, the samples were incubated with a series of fluorescent probes. Figure 4 shows the staining of lectins (top left) present in the biofilm from the enrichment culture that was inoculated with homogenized live sponge tissue. The aggregates of enriched microbes seen under brightfield light microscopy do not exhibit autofluorescence (Fig. 4, bottom left) but do stain with ConA-rhodamine. Microbes that are not aggregated do not stain with ConA-rhodamine. Conversely, attempts to employ mono fluorescence in situ hybridization (FISH) with EUB-Alexa488 and ARCH915-Cy3 to stain bacteria and archaea respectively and overcome the autofluorescence of the sponge failed (Fig. 4, right). Figure 4. (a) lectin staining (top) of the culture containing the biofilm and control for autofluorescence (bottom); (b) attempted monoFISH with EUB-Alexa488 and ARCH915-Cy3 on fixed live sponge tissue (top) and fixed dead sponge tissue (bottom). Labels in top left indicate filter cube and fluorescent probe used to acquire the image. Having failed to overcome the sponge autofluorescence with mono-FISH, microbial identification through passive clarity technique (MiPACT) was attempted.14 Samples of sponge tissue were embedded in resin, cleared with SDS, and cut into 1 mm3 pieces prior to incubation with probes for hybridization chain reaction FISH (HCR-FISH), which amplifies the fluorescence signal by an order of magnitude as compared to mono-FISH. An additional benefit of this technique is that embedding the tissue in resin and imaging using confocal microscopy allows for 3D reconstructions of the environment inside of the sponge. Samples of sponge tissue were prepared for MiPACT with no HCR-FISH probe, EUB B1 probe, or NON B1 probe. Sections of the sponge tissue were imaged in 10 x 80 x 80 um cubes. Without a HCR-FISH probe, the DAPI present in the mounting medium stained the nuclei of the sponge cells, which were visible as blue spheroids in Figure 5a. The autofluorescence of the sponge was still visible under confocal microscopy, particularly around the spicules (top right of Fig. 5a), but it appeared to be greatly diminished as compared to the standard fluorescence microscopy carried out earlier. For the sample containing EUB B1 probe, there is a strong signal from the Alexa-488 fluorophore that may be colocalized with bacterial symbionts (small spheroids and rods, Fig. 5b). The large green patches present in Figure 5b may correspond to non-specific probe binding or to thick biofilms coating the interior of the pores in the sponge tissue. However, the sample with the NON B1 probe, which is a nonsense rearrangement of the bases in the EUB B1 probe with an Alexa-488 fluorophore, does not show this pattern and looks similar to the tissue sample without HCR-probe treatment. With optimization, this technique could be used to visualize the 3D distribution of microbial populations on and within the sponge tissue, perhaps even intracellularly. Figure 5. Stills from a 10 um z-stack of (a) DAPI-only stain of MiPACT–prepared live sponge tissue (b) DAPI, EUB B1, and Con-A stained MiPACT-prepared live sponge tissue In an attempt to determine what microbes were present on the sponge tissue, samples of live and dead sponge tissue were homogenized and their metagenomic DNA was extracted. 16S rDNA was amplified using archaeal specific primers in hopes of obtaining sequences corresponding to ammonia oxidizing archaea. The crude amplification reactions were ligated into a pGEM-T vector system and clones containing inserts were identified via blue/white selection. These clones were cultured, miniprepped,
Recommended publications
  • Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2005 Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight Richard Robert Ruzicka Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Ruzicka, Richard Robert, "Sponge Community Structure and Anti-Predator Defenses on Temperate Reefs of the South Atlantic Bight" (2005). Electronic Theses and Dissertations. 705. https://digitalcommons.georgiasouthern.edu/etd/705 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. SPONGE COMMUNITY STRUCTURE AND ANTI-PREDATOR DEFENSES ON TEMPERATES REEFS OF THE SOUTH ATLANTIC BIGHT by RICHARD ROBERT RUZICKA III Under the Direction of Daniel F. Gleason ABSTRACT The interaction between predation and anti-predator defenses of prey is important in shaping community structure in all ecosystems. This study examined the relationship between sponge predation and the distribution of sponge anti-predator defenses on temperate reefs in the South Atlantic Bight. Significant differences in the distribution of sponge species, sponge densities, and densities of sponge predators were documented across two adjacent reef habitats. Significant differences also occurred in the distribution of sponge chemical and structural defenses with chemical deterrence significantly greater in sponges associated with the habitat having higher predation intensity. Structural defenses, although effective in some instances, appear to be inadequate against spongivorous predators thereby restricting the distribution of sponge species lacking chemical defenses to habitats with lower predation intensity.
    [Show full text]
  • HABITAT TYPE and ASSOCIATED BIOLOGICAL ASSEMBLAGES – Shellfish Beds Sculpins, Rockfish, Perch and Herring
    HABITAT TYPE AND ASSOCIATED BIOLOGICAL ASSEMBLAGES – Shellfish Beds sculpins, rockfish, perch and herring. Hard substrates are arenaria. Sutton (1978) also delineated beds of the rough an important feeding habitat for harbor seals, including piddock (Zirfaea pilsbryi), a native clam that bores into from the Golden Gate east to Treasure Island, northwest soft rock or clays, as a potential species for sport harvest, to Tiburon Peninsula, and southward to Yerba Buena and suggested that there may be significant subtidal beds Island (Goals Project 2000, Green et al. 2006). Also, of the native bentnose clam (Macoma nasuta), which was many harbor seal haul-out sites are located in close commonly harvested by Native Americans. Some studies proximity to subtidal hard substrate including Point refer in passing to beds of the exotic freshwater Asiatic Bonita, Castro Rocks, Yerba Buena Island, and Angel clam (Corbicula fluminea; harvested for food or bait), Island (Goals Project 2000). Sea lions also feed in deep, native California mussel (Mytilus californianus), bay marine waters of San Francisco Bay; however, they feed mussel (consisting of the native M. trossulus, the exotic M. mostly on seasonally abundant herring associated with galloprovincialis, and their hybrids), exotic ribbed hard structures and eel grass beds in the Central Bay, and horsemussel (Geukensia demissa), native ghost shrimp on spawning salmonids that are migrating up the Bay (Neotrypaea californica), and the blue mud shrimp across multiple habitats to freshwater tributaries. Pacific (Upogebia pugettensis). Jones & Stokes (1977) and Sutton herring is a major prey item for many marine mammal (1978) implied that the ribbed horsemussel might be a species that are drawn to the Bay, including harbor sport-harvested species in the San Francisco Bay.
    [Show full text]
  • Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region
    Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region July 2009 Executive Summary Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region Pursuant to section 305(b)(2) of the Magnuson-Stevens Fishery Conservation and Management Act of 1976 (16 U.S.C. §1855(b)), the United States Army Corps of Engineers (USACE) and the United States Environmental Protection Agency (USEPA), as the federal lead and co-lead agencies, respectively, submit this Programmatic Essential Fish Habitat (EFH) Assessment for the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region. This document provides an assessment of the potential effects of the on-going dredging and dredged material placement activities of all federal and non-federal maintenance dredging projects in the action area (see Figure 1.1 located on page 3). The SF Bay LTMS program area spans 11 counties, including: Marin, Sonoma, Napa, Solano, Sacramento, San Joaquin, Contra Costa, Alameda, Santa Clara, San Mateo and San Francisco counties. It does not include the mountainous or inland areas far removed from navigable waters. The geographic scope of potential impacts included in this consultation (action area) comprises the estuarine waters of the San Francisco Bay region, portions of the Sacramento-San Joaquin Delta (Delta) west of Sherman Island and the western portion of the Port of Sacramento and Port of Stockton deep water ship channels. It also includes the wetlands and shallow intertidal areas that form a margin around the Estuary and the tidal portions of its tributaries.
    [Show full text]
  • Becker Et Al. 2014
    Biological Conservation 176 (2014) 199–206 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki) ⇑ Matthew H. Becker a, , Corinne L. Richards-Zawacki b, Brian Gratwicke c, Lisa K. Belden a a Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA b Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA c Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA article info abstract Article history: For many threatened vertebrates, captivity may be the only option for species survival. Maintaining Received 11 February 2014 species in captivity prior to reintroduction presents many challenges, including the need to preserve Received in revised form 21 April 2014 genetic diversity and mitigation of disease risks. Recent studies suggest that captivity can alter the suite Accepted 28 May 2014 of symbiotic microbes that play important roles in host health. The Panamanian golden frog (Atelopus zeteki) has not been seen in its native habitat in Panamá since 2009. Along with habitat loss and illegal collecting, the lethal disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendro- Keywords: batidis (Bd), is responsible for the severe decline of this species. Prior to the spread of Bd into golden frog Amphibians habitat, conservation organizations collected golden frogs and placed them in captive survival assurance Captive management Batrachochytrium dendrobatidis colonies. The skin of amphibians is host to a diverse resident bacterial community, which acts as a Probiotic defense mechanism in some amphibians to inhibit pathogens.
    [Show full text]
  • Chapter 9. State of Deep-Sea Coral and Sponge Ecosystems of the U.S
    State of Deep‐Sea Coral and Sponge Ecosystems of the Northeast United States Chapter 9 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Packer DB, Nizinski MS, Bachman MS, Drohan AF, Poti M, Kinlan BP (2017) State of Deep‐Sea Coral and Sponge Ecosystems of the Northeast United States. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 62 p. Available online: http://deepseacoraldata.noaa.gov/library. An octopus hides in a rock wall dotted with cup coral and soft coral in Welker Canyon off New England. Courtesy of the NOAA Office of Ocean Exploration and Research. STATE OF DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE NORTHEAST UNITED STATES STATE OF DEEP-SEA CORAL AND SPONGE David B. Packer1*, ECOSYSTEMS OF THE Martha S. NORTHEAST UNITED Nizinski2, Michelle S. STATES Bachman3, Amy F. Drohan1, I. Introduction Matthew Poti4, The Northeast region extends from Maine to North Carolina ends at and Brian P. the U.S. Exclusive Economic Zone (EEZ). It encompasses the 4 continental shelf and slope of Georges Bank, southern New Kinlan England, and the Mid‐Atlantic Bight to Cape Hatteras as well as four New England Seamounts (Bear, Physalia, Mytilus, and 1 NOAA Habitat Ecology Retriever) located off the continental shelf near Georges Bank (Fig. Branch, Northeast Fisheries Science Center, 1). Of particular interest in the region is the Gulf of Maine, a semi‐ Sandy Hook, NJ enclosed, separate “sea within a sea” bounded by the Scotian Shelf * Corresponding Author: to the north (U.S.
    [Show full text]
  • The Role of Fishing Vessels As Vectors of Marine and Estuarine Aquatic
    Aquatic Invasive Species Vector Risk Assessments: 7KHUROHRIÀVKLQJYHVVHOVDVYHFWRUVIRUPDULQHDQG HVWXDULQHVSHFLHVLQ&DOLIRUQLD Final Report July 2012 Submitted to the California Ocean Science Trust Funded by the California Ocean Protection Council By: The Aquatic Bioinvasion Research & Policy Institute $3DUWQHUVKLSEHWZHHQ3RUWODQG6WDWH8QLYHUVLW\ WKH6PLWKVRQLDQ(QYLURQPHQWDO 5HVHDUFK&HQWHU Ian Davidson, Gail Ashton, Chela Zabin & Greg Ruiz TABLEOFCONTENTS 1.EXECUTIVESUMMARY...........................................................................................................................3 2.INTRODUCTION.....................................................................................................................................5 2.1Aims.....................................................................................................................................................7 3.METHODS............................................................................................................................................10 3.1InvasionHistory&VectorStrength..................................................................................................10 3.2VectorAnalysis..................................................................................................................................11 3.3ImpactsofCaliforniaAISwithfishingvesselbiofoulingasapossiblevector...................................13 3.4Vectordisruption..............................................................................................................................14
    [Show full text]
  • Sponge Cell Culture
    Sponge cell culture Klaske J. Schippers Sponge cell culture Klaske J. Schippers Thesis committee Promotors Submitted in fulfillment of the requirements for the degree of doctor Prof. dr. ir. R.H. Wijffels at Wageningen University Professor of Bioprocess Engineering by the authority of the Rector Magnificus Wageningen University Prof. dr. M.J. Kropff, in the presence of the Co-promotors Thesis Committee appointed by the Academic Board to be defended in public Prof. dr. S.A. Pomponi on Friday 15 February 2013 Professor of Marine Biotechnology, Wageningen University / Professor Harbor at 4 p.m. in the Aula. Branch Oceanographic Institute-Florida Atlantic University, USA Dr.ir. D.E. Martens Assistant professor, Bioprocess Engineering Wageningen University Other members Prof. dr. J. van der Oost, Wageningen University Dr. N.J. de Voogd, Museum Naturalis, Leiden Prof. dr. M.J. Uriz, Centro de Estudios Avanzados de Blanes, Spain Dr. ir. G.P. Pijlman, Wageningen University This research was conducted under the auspices of the Graduate School VLAG (Advances studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Table of contents Chapter 1 Introduction and thesis outline 7 Chapter 2 Cultivation of sponges, sponge cells and symbionts: 21 achievements and future prospects. Advances in Marine Biology 2012. 62: 273-337. Chapter 3 Cell cycle analysis of primary sponge cell cultures. 87 In Vitro Cellular & Developmental Biology – Animal 2011. 47:302-311. Chapter 4 Toward development of a sponge cell line: comparison 105 of cell proliferation in sponge cell and tissue cultures. Submitted for publication. Chapter 5 Methods for insertion and expression of heterologous 127 genes in sponge cells.
    [Show full text]
  • Horizontal Gene Transfer in the Sponge Amphimedon Queenslandica
    Horizontal gene transfer in the sponge Amphimedon queenslandica Simone Summer Higgie BEnvSc (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Biological Sciences Abstract Horizontal gene transfer (HGT) is the nonsexual transfer of genetic sequence across species boundaries. Historically, HGT has been assumed largely irrelevant to animal evolution, though widely recognised as an important evolutionary force in bacteria. From the recent boom in whole genome sequencing, many cases have emerged strongly supporting the occurrence of HGT in a wide range of animals. However, the extent, nature and mechanisms of HGT in animals remain poorly understood. Here, I explore these uncertainties using 576 HGTs previously reported in the genome of the demosponge Amphimedon queenslandica. The HGTs derive from bacterial, plant and fungal sources, contain a broad range of domain types, and many are differentially expressed throughout development. Some domains are highly enriched; phylogenetic analyses of the two largest groups, the Aspzincin_M35 and the PNP_UDP_1 domain groups, suggest that each results from one or few transfer events followed by post-transfer duplication. Their differential expression through development, and the conservation of domains and duplicates, together suggest that many of the HGT-derived genes are functioning in A. queenslandica. The largest group consists of aspzincins, a metallopeptidase found in bacteria and fungi, but not typically in animals. I detected aspzincins in representatives of all four of the sponge classes, suggesting that the original sponge aspzincin was transferred after sponges diverged from their last common ancestor with the Eumetazoa, but before the contemporary sponge classes emerged.
    [Show full text]
  • Rapid Assessment Survey of Marine Species at New England Bays and Harbors
    Report on the 2013 Rapid Assessment Survey of Marine Species at New England Bays and Harbors June 2014 CREDITS AUTHORED BY: Christopher D. Wells, Adrienne L. Pappal, Yuangyu Cao, James T. Carlton, Zara Currimjee, Jennifer A. Dijkstra, Sara K. Edquist, Adriaan Gittenberger, Seth Goodnight, Sara P. Grady, Lindsay A. Green, Larry G. Harris, Leslie H. Harris, Niels-Viggo Hobbs, Gretchen Lambert, Antonio Marques, Arthur C. Mathieson, Megan I. McCuller, Kristin Osborne, Judith A. Pederson, Macarena Ros, Jan P. Smith, Lauren M. Stefaniak, and Alexandra Stevens This report is a publication of the Massachusetts Office of Coastal Management (CZM) pursuant to the National Oceanic and Atmospheric Administration (NOAA). This publication is funded (in part) by a grant/cooperative agreement to CZM through NOAA NA13NOS4190040 and a grant to MIT Sea Grant through NOAA NA10OAR4170086. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub-agencies. This project has been financed, in part, by CZM; Massachusetts Bays Program; Casco Bay Estuary Partnership; Piscataqua Region Estuaries Partnership; the Rhode Island Bays, Rivers, and Watersheds Coordination Team; and the Massachusetts Institute of Technology Sea Grant College Program. Commonwealth of Massachusetts Deval L. Patrick, Governor Executive Office of Energy and Environmental Affairs Maeve Vallely Bartlett, Secretary Massachusetts Office of Coastal Zone Management Bruce K. Carlisle, Director Massachusetts Office of Coastal Zone Management 251 Causeway Street, Suite 800 Boston, MA 02114-2136 (617) 626-1200 CZM Information Line: (617) 626-1212 CZM Website: www.mass.gov/czm PHOTOS: Adriaan Gittenberger, Gretchen Lambert, Linsey Haram, and Hans Hillewaert ACKNOWLEDGMENTS The New England Rapid Assessment Survey was a collaborative effort of many individuals.
    [Show full text]
  • Ontogeny of Symbiont Community Structure in Two Carotenoid-Rich, Viviparous Marine Sponges: Comparison of Microbiomes and Analys
    Ontogeny of symbiont community structure in two carotenoid-rich, viviparous marine sponges: comparison of microbiomes and analysis of culturable pigmented heterotrophic bacteria. Oriol Sacristán-Soriano1,2, Marina Winkler1, Patrick Erwin3, Jeremy Weisz4, Olivia Harriott5, Gary Heussler5, Emily Bauer1, Brittany West Marsden1,6, April Hill1,*, and Malcolm Hill1,*,† 1Department of Biology; University of Richmond; Richmond, VA Article 2Centro de Estudios Avanzados de Blanes (CEAB, CSIC), Blanes, Spain 3Department of Biology and Marine Biology; Center for Marine Science; University of North Carolina, Wilmington; Wilmington, NC 4Department of Biology; Linfield College; McMinnville, OR 5Department of Biology; Fairfield University, Fairfield, CT 6Current address: National Oceanic and Atmospheric Administration, Washington DC *Current address: Department of Biology, Bates College, Lewiston, ME 04240 †Corresponding author Accepted Keywords: symbiosis, microbial symbiont transmission, culture-dependent symbiont isolation, Halichondria, Clathria This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1758 -2229.12739 This article is protected by copyright. All rights reserved Abstract Marine sponges harbor diverse communities of microbes. Mechanisms employed to establish microbial symbioses in sponges are poorly understood, and the relative contributions of horizontal and vertical transmission are unknown for most species. We examined microbial communities in adults and larvae of carotenoid-rich Clathria prolifera and Halichondria bowerbanki from the mid-Atlantic region of the eastern United States. We sequenced microbiomes from larvae and their mothers and seawater (16S rRNA gene sequencing), and compared microbial community characteristics between species and ambient seawater.
    [Show full text]
  • Biodiversity of Sponges (Phylum: Porifera) Off Tuticorin, India
    Available online at: www.mbai.org.in doi:10.6024/jmbai.2020.62.2.2250-05 Biodiversity of sponges (Phylum: Porifera) off Tuticorin, India M. S. Varsha1,4 , L. Ranjith2, Molly Varghese1, K. K. Joshi1*, M. Sethulakshmi1, A. Reshma Prasad1, Thobias P. Antony1, M.S. Parvathy1, N. Jesuraj2, P. Muthukrishnan2, I. Ravindren2, A. Paulpondi2, K. P. Kanthan2, M. Karuppuswami2, Madhumita Biswas3 and A. Gopalakrishnan1 1ICAR-Central Marine Fisheries Research Institute, Kochi-682018, Kerala, India. 2Regional Station of ICAR-CMFRI, Tuticorin-628 001, Tamil Nadu, India. 3Ministry of Environment Forest and Climate Change, New Delhi-110003, India. 4Cochin University of Science and Technology, Kochi-682022, India. *Correspondence e-mail: [email protected] Received: 10 Nov 2020 Accepted: 18 Dec 2020 Published: 30 Dec 2020 Original Article Abstract the Vaippar - Tuticorin area. Tuticorin area is characterized by the presence of hard rocky bottom, soft muddy bottom, lagoon The present study deals with 18 new records of sponges found at and lakes. Thiruchendur to Tuticorin region of GOM-up to a Kayalpatnam area and a checklist of sponges reported off Tuticorin distance of 25 nautical miles from shore 8-10 m depth zone-is in the Gulf of Mannar. The new records are Aiolochoria crassa, characterized by a narrow belt of submerged dead coral blocks Axinella damicornis, Clathria (Clathria) prolifera, Clathrina sororcula, which serves as a very good substrate for sponges. Patches of Clathrina sinusarabica, Clathrina coriacea, Cliona delitrix, Colospongia coral ground “Paar” in the 10-23 m depth zone, available in auris, Crella incrustans, Crambe crambe, Hyattella pertusa, Plakortis an area of 10-16 nautical miles from land are pearl oyster beds simplex, Petrosia (Petrosia) ficiformis, Phorbas plumosus, (Mahadevan and Nayar, 1967; Nayar and Mahadevan, 1987) Spheciospongia vesparium, Spirastrella cunctatrix, Xestospongia which also forms a good habitat for sponges.
    [Show full text]
  • Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance
    Current Status and Historical Trends of the Estuarine Living Resources within the Corpus Christi Bay National Estuary Program Study Area Volume 4 of 4 Checklist of Species Within the CCBNEP Study Area: References, Habitats, Distribution, and Abundance Corpus Christi Bay National Estuary Program CCBNEP-06D • January 1996 This project has been funded in part by the United States Environmental Protection Agency under assistance agreement #CE-9963-01-2 to the Texas Natural Resource Conservation Commission. The contents of this document do not necessarily represent the views of the United States Environmental Protection Agency or the Texas Natural Resource Conservation Commission, nor do the contents of this document necessarily constitute the views or policy of the Corpus Christi Bay National Estuary Program Management Conference or its members. The information presented is intended to provide background information, including the professional opinion of the authors, for the Management Conference deliberations while drafting official policy in the Comprehensive Conservation and Management Plan (CCMP). The mention of trade names or commercial products does not in any way constitute an endorsement or recommendation for use. Volume 4 Checklist of Species within Corpus Christi Bay National Estuary Program Study Area: References, Habitats, Distribution, and Abundance John W. Tunnell, Jr. and Sandra A. Alvarado, Editors Center for Coastal Studies Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, Texas 78412 Current Status and Historical Trends of Estuarine Living Resources of the Corpus Christi Bay National Estuary Program Study Area January 1996 Policy Committee Commissioner John Baker Ms. Jane Saginaw Policy Committee Chair Policy Committee Vice-Chair Texas Natural Resource Regional Administrator, EPA Region 6 Conservation Commission Mr.
    [Show full text]