The VHP-F Computational Phantom and Its Applications for Electromagnetic Simulations

Total Page:16

File Type:pdf, Size:1020Kb

The VHP-F Computational Phantom and Its Applications for Electromagnetic Simulations The VHP-F Computational Phantom and its Applications for Electromagnetic Simulations by Gregory Michael Noetscher A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical and Computer Engineering April 2014 APPROVED: Dr. Sergey Makarov ___________________________________ Worcester Polytechnic Institute Dr. Mikhail Kozlov ___________________________________ Max Planck Institute for Human Cognitive and Brain Sciences Dr. Andrew Cavanaugh ____________________________________ Naval Undersea Warfare Center Dr. Vishwanath Iyer ____________________________________ The Mathworks, Inc. Dr. Ara Nazarian ____________________________________ Beth Israel Deaconess Medical Center To Nelson Hettler, P.E. for providing the spark that has turned into a lifelong pursuit of engineering. ii Abstract Modeling of the electromagnetic, structural, thermal, or acoustic response of the human body to various external and internal stimuli is limited by the availability of anatomically accurate and numerically efficient computational models. The models currently approved for use are generally of proprietary or fixed format, preventing new model construction or customization. 1. This dissertation develops a new Visible Human Project – Female (VHP-F) computational phantom, constructed via segmentation of anatomical cryosection images taken in the axial plane of the human body. Its unique property is superior resolution on human head. In its current form, the VHP-F model contains 33 separate objects describing a variety of human tissues within the head and torso. Each obejct is a non-intersecting 2-manifold model composed of contiguous surface triangular elements making the VHP-F model compatible with major commercial and academic numerical simulators employing the Finite Element Method (FEM), Boundary Element Method (BEM), Finite Volume Method (FVM), and Finite-Difference Time- Domain (FDTD) Method. 2. This dissertation develops a new workflow used to construct the VHP-F model that may be utilized to build accessible custom models from any medical image data source. The workflow is customizable and flexible, enabling the creation of standard and parametrically varying models facilitating research on impacts associated with fluctuation of body characteristics (for example, skin thickness) and dynamic processes such as fluid pulsation. 3. This dissertation identifies, enables, and quantifies three new specific computational bioelectromagnetic problems, each of which is solved with the help of the developed VHP-F model: I. Transcranial Direct Current Stimulation (tDCS) of human brain motor cortex with extracephalic versus cephalic electrodes; II. RF channel characterization within cerebral cortex with novel small on-body directional antennas; III. Body Area Network (BAN) characterization and RF localization within the human body using the FDTD method and small antenna models with coincident phase centers. Each of those problems has been (or will be) the subject of a separate dedicated MS thesis. iii Acknowledgement While this dissertation represents the culmination of my time as a PhD candidate in the Electrical and Computer Engineering Department at Worcester Polytechnic Institute, the research goals described herein were not accomplished in isolation and I wish to thank the many individuals that contributed along the way. First and foremost, I would like to thank Prof. Sergey Makarov for advising this work and providing incredible leadership and guidance during these past five years. His commitment to his students and his motivation are truly inspirational; he has provided an example to which I shall strive to achieve for the remainder of my career. I wish to thank Dr. Alvaro Pascual-Leone, Prof. Reinhold Ludwig, Prof. Peder Pedersen, and Dr. Francesca Scire-Scappuzzo for providing exceptional direction that has significantly shaped the outcome of this work. Thank you also to Dr. Mikhail Kozlov of the Max Planck Institute for Human Cognitive and Brain Sciences, Dr. Ara Nazarian of Beth Israel Deaconess Medical Center, Dr. Andrew Cavanaugh of the Naval Undersea Warfare Center and Dr. Vishwanath Iyer of The Mathworks – I am supremely humbled to have committee members of such high esteem. Thank you to Dr. Alexander Prokop and Dr. Tilmann Wittig of Computer Simulation Technology and Dr. Sara Louie of ANSYS, Inc. for providing compatibility and performance analysis of the VHP-F computational phantom. Their insight regarding the integration of the model into their respective softwares and the typical desires of potential customers using human body models for electromagnetic analysis has been very important in the development of the model. Thank you to the students that I have interacted with at WPI, including Jeffrey Elloian, Janakinadh Yanamadala, Aung Thu Htet, Saili Maliye, David Quinn and Chas Frick. Best of luck to all of you all! I would also like to thank my mom, Cheryl Noetscher, for lifelong support in pursuing my goals and for demonstrating that it is possible to simultaneously raise a family, have a successful career and achieve academic excellence. iv Finally, I wish to thank my wife Yen, who has made innumerable sacrifices in order for me to complete this work. A very special thank you is reserved for our children, Jennifer and Benjamin - your openness and willing attitude toward learning have been a motivating force that drives me. May you carry this on throughout your lives! v Table of Contents Abstract .......................................................................................................................................... iii Acknowledgement ......................................................................................................................... iv Table of Contents ........................................................................................................................... vi List of Figures ............................................................................................................................... xii List of Tables .............................................................................................................................. xvii List of Published and Accepted Papers ...................................................................................... xviii Chapter 1 – Introduction ................................................................................................................. 1 1.1 Existing commercial models ............................................................................................ 3 1.2 Existing commercial workflow and segmentation tools .................................................. 5 1.3 Existing open-source segmentation tools ......................................................................... 5 1.4 Dissertation organization ...................................................................................................... 6 References ................................................................................................................................... 6 Chapter 2 – Theory of triangular surface meshes ......................................................................... 11 2.1 Triangular mesh and its quality ...................................................................................... 12 2.1.1 Triangular mesh type ................................................................................................... 13 2.1.2 Triangular mesh quality ............................................................................................... 14 2.2 Delaunay triangulation ........................................................................................................ 16 2.2.1 Delaunay Triangulation Algorithm .............................................................................. 17 2.2.2 Constrained Delaunay Triangulation ........................................................................... 18 2.3 Mesh Transformations ........................................................................................................ 19 2.4 Mesh generation and improvement ..................................................................................... 20 2.4.1 Laplacian Smoothing ................................................................................................... 20 2.4.2 Mesh Decimation ......................................................................................................... 23 2.5 Adaptive mesh refinement and mesh gradation .................................................................. 24 2.6 Implicit boundary description ............................................................................................. 31 2.6.1 Mesh size function ....................................................................................................... 32 2.7 Creating 2-manifold surface meshes ................................................................................... 33 vi 2.8 A Note on Constructive Solid Geometry ............................................................................ 34 References ................................................................................................................................. 40 Chapter 3 – Image segmentation................................................................................................... 44 3.1 Basic principles of image segmentation ............................................................................
Recommended publications
  • 95 CHAPTER 5 Looking at Science, Looking at You! the Feminist Re-Visions of Nature
    CHAPTER 5 Looking at Science, Looking at You! The Feminist Re-visions of Nature (Brain and Genes) Cecilia Åsberg Vision has often been a central concern of feminist studies of science, medi- cine and technology. In cultural or social feminist analysis, the male gaze and the ways in which technoscience1 accommodates, and in effect organizes the watching of women, has been an important part of the feminist interrogation of the gender and power relations that produce the subjects and the objects of science.2 This attention is due to the intimate, and power-saturated, merge of processes of seeing and processes of knowing. Inherent in the notion of vision, there is always a politics to ways of seeing, ordering and observing, of organising the knowledge of the world. Historically, this can be exemplified by the eighteen-century Swedish “father” of biological classification, Linnaeus. Taking a leap away from Christian assumptions, Linnaeus placed human beings in a taxonomic order of nature together with other animals.3 In his large-scale vision, he located humans together with primates in the order of Homo sapiens, as Donna Haraway4 so eloquently describes it in her ground-breaking book Primate Visions. And as the “father” of a specific discourse on nature, one that was not understood biologically but rather representationally, and still within a highly Christian framework, he referred to himself as the second Adam, as the “eye” of God. As the second Adam, Linnaeus could give true representations and true names to nature’s creatures and in so doing also restore the purity of name-giving lost by the first, biblical Adam’s sin.
    [Show full text]
  • Directing the Narrative Shot Design
    DIRECTING THE NARRATIVE and SHOT DESIGN The Art and Craft of Directing by Lubomir Kocka Series in Cinema and Culture © Lubomir Kocka 2018. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Vernon Art and Science Inc. www.vernonpress.com In the Americas: In the rest of the world: Vernon Press Vernon Press 1000 N West Street, C/Sancti Espiritu 17, Suite 1200, Wilmington, Malaga, 29006 Delaware 19801 Spain United States Series in Cinema and Culture Library of Congress Control Number: 2018933406 ISBN: 978-1-62273-288-3 Product and company names mentioned in this work are the trademarks of their respective owners. While every care has been taken in preparing this work, neither the authors nor Vernon Art and Science Inc. may be held responsible for any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it. CONTENTS PREFACE v PART I: DIRECTORIAL CONCEPTS 1 CHAPTER 1: DIRECTOR 1 CHAPTER 2: VISUAL CONCEPT 9 CHAPTER 3: CONCEPT OF VISUAL UNITS 23 CHAPTER 4: MANIPULATING FILM TIME 37 CHAPTER 5: CONTROLLING SPACE 43 CHAPTER 6: BLOCKING STRATEGIES 59 CHAPTER 7: MULTIPLE-CHARACTER SCENE 79 CHAPTER 8: DEMYSTIFYING THE 180-DEGREE RULE – CROSSING THE LINE 91 CHAPTER 9: CONCEPT OF CHARACTER PERSPECTIVE 119 CHAPTER 10: CONCEPT OF STORYTELLER’S PERSPECTIVE 187 CHAPTER 11: EMOTIONAL MANIPULATION/ EMOTIONAL DESIGN 193 CHAPTER 12: PSYCHO-PHYSIOLOGICAL REGULARITIES IN LEFT-RIGHT/RIGHT-LEFT ORIENTATION 199 CHAPTER 13: DIRECTORIAL-DRAMATURGICAL ANALYSIS 229 CHAPTER 14: DIRECTOR’S BOOK 237 CHAPTER 15: PREVISUALIZATION 249 PART II: STUDIOS – DIRECTING EXERCISES 253 CHAPTER 16: I.
    [Show full text]
  • Advanced Sectioned Images of a Cadaver Head with Voxel Size Of
    J Korean Med Sci. 2019 Sep 2;34(34):e218 https://doi.org/10.3346/jkms.2019.34.e218 eISSN 1598-6357·pISSN 1011-8934 Original Article Advanced Sectioned Images of a Cadaver Basic Medical Sciences Head with Voxel Size of 0.04 mm Beom Sun Chung ,1 Miran Han ,2 Donghwan Har ,3 and Jin Seo Park 4 1Department of Anatomy, Ajou University School of Medicine, Suwon, Korea 2Department of Radiology, Ajou University School of Medicine, Suwon, Korea 3College of ICT Engineering, Chung Ang University, Seoul, Korea 4Department of Anatomy, Dongguk University School of Medicine, Gyeongju, Korea Received: Jun 14, 2019 Accepted: Jul 22, 2019 ABSTRACT Address for Correspondence: Background: The sectioned images of a cadaver head made from the Visible Korean project Jin Seo Park, PhD have been used for research and educational purposes. However, the image resolution Department of Anatomy, Dongguk University is insufficient to observe detailed structures suitable for experts. In this study, advanced School of Medicine, 87 Dongdae-ro, Gyeongju sectioned images with higher resolution were produced for the identification of more 38067, Republic of Korea. E-mail: [email protected] detailed structures. Methods: The head of a donated female cadaver was scanned for 3 Tesla magnetic resonance © 2019 The Korean Academy of Medical images and diffusion tensor images (DTIs). After the head was frozen, the head was Sciences. sectioned serially at 0.04-mm intervals and photographed repeatedly using a digital camera. This is an Open Access article distributed Results: On the resulting 4,000 sectioned images (intervals and pixel size, 0.04 mm3; color under the terms of the Creative Commons Attribution Non-Commercial License (https:// depth, 48 bits color; a file size, 288 Mbytes), minute brain structures, which can be observed creativecommons.org/licenses/by-nc/4.0/) not on previous sectioned images but on microscopic slides, were observed.
    [Show full text]
  • The Virtual Hip: an Anatomically Accurate Finite Element Model Based on the Visible Human Dataset
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 10-4-2010 The Virtual Hip: An Anatomically Accurate Finite Element Model Based on the Visible Human Dataset Jonathan M. Ford University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons, Biomedical Engineering and Bioengineering Commons, and the Chemical Engineering Commons Scholar Commons Citation Ford, Jonathan M., "The Virtual Hip: An Anatomically Accurate Finite Element Model Based on the Visible Human Dataset" (2010). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/3451 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Virtual Hip: An Anatomically Accurate Finite Element Model Based on the Visible Human Dataset by Jonathan M. Ford A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering Department of Chemical and Biomedical Engineering College of Engineering University of South Florida Co-Major Professor: Don Hilbelink, Ph.D. Co-Major Professor: Les Piegl, Ph.D. William Lee III, Ph.D., P.E. Karl Muffly, Ph.D. Date of Approval: October 4, 2010 Keywords: Quantitative Anatomy, Gluteus Minimus, COMSOL, Model Error Copyright © 2010, Jonathan M. Ford DEDICATION I would like to dedicate this thesis to “B” and Vegas. They pushed me to reach for the stars and when I lost my direction they were the ones to point me the way.
    [Show full text]
  • High Performance Computing and Communications: Toward a National Information Infrastructure
    DOCUMENT RESUME ED 368 330 IR 016 567 TITLE High Performance Computing and Communications: Toward a National Information Infrastructure. INSTITUTION Federal Coordinating Council for Science, Engineering and Technology, Washington, DC. PUB DATE 94 NOTE 190p.; Illustrations and photographs may not copy adequately. PUB TYPE Reports Evaluative/Feasibility (142) EDRS PRICE MF01/PC08 Plus Postage. DESCRIPTORS Computer Centers; Computer Networks; *Educational Technology; Government Role; Information Networks; Program Evaluation; Research and Development; *Technological Advancement; *Telecommunications; Training IDENTIFIERS *High Performance Computing; High Performance Computing Act 1991; *National Information Infrastructure; National Research and Education Network ABSTRACT This report describes the High Performance Computing and Communications (HPCC) initiative of the Federal Coordinating Council for Science, Engineering, and Technology. This program is supportive of and coordinated with the National Information Infrastructure Initiative. Now halfway through its 5-year effort, the HPCC program counts among its achievements more than a dozen high-performance computing centers in operation nationwide. Traffic on federally funded networks and the number of local and regional networks connected to these centers continues to double each year. Teams of researchers have made substantial progress in adapting software for use on high-performance computer systems; and the base of researchers, educators, and students trained in HPCC technologies has grown substantially. The five HPCC program components in operation at present are:(1) scalable computing systems ranging from affordable workstations to large-scale high-performance systems; (2) the National Research and Education Network;(3) the Advanced Software Technology and Algorithms program; (4) the Information Infrastructure Technology and Applications program; and (5) the Bas.c Research and Human Resources program.
    [Show full text]
  • 1991 the Regional Medical Library Network Was Expanded from Seven to Eight Regions
    TUTES O F HEALTH NATIONAL LIBRARY OF MEDICINE PROGRAMS & SERVICES FISCAL YEAR 1 99 1 Further information about the programs described in this administrative report is available from: Office of Public Information National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894 (301)496-6308 Cover: In Fiscal Year 1991 the Regional Medical Library Network was expanded from seven to eight regions. It also underwent a name change and is now designated the National Network of Libraries of Medicine (abbreviated NN/LM). The network is described on page 10 of this report. NATIONAL INSTITUTES O F HEALTH NATIONAL LIBRARY OF MEDICINE PROGRAMS & SERVICES FISCAL YEAR 1 991 U.S. DEPARTMENT O F HEALTH AND HUMAN SERVICES • Public Health Service National Library of Medicine Catalog in Publication 2 National Library of Medicine (US) 675 M4 National Library of Medicine programs and services -- U56an 1977- - Bethesda, Md The Library, [1978- v ill, ports Report covers fiscal year Continues National Library of Medicine (US) Programs and services Vols for 1977-78 issued as DHEW publication , no (NIH) 78-256, etc , for 1979-80 as NIH publication , no 80-256, etc Vols for 1981-available from the National Technical Information Service, Springfield, Va ISSN 0163-4569 = National Library of Medicine programs and services 1 Information Services - United States - periodicals 2 Libraries, Medical - United States - periodicals I Title II Series DHEW publication , no 80-256, etc Ill PREFACE The reader of this year's report will note a number of important events. New 5- year contracts were signed with the eight Regional Medical Libraries that, together with 130 Resource Libraries (primarily at medical schools) and 3600 Local Libraries (primarily at hospitals), make up the National Network of Libraries of Medicine.
    [Show full text]
  • National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894 301-496-6308 E-Mail: [email protected] Web
    Further information about the programs described in this administrative report is available from the: Office of Communications and Public Liaison National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894 301-496-6308 E-mail: [email protected] Web: www.nlm.nih.gov Cover: “Changing the Face of Medicine,” an exhibition at the NLM, honors the lives and achievements of American women in medicine NATIONAL INSTITUTES OF HEALTH NATIONAL LIBRARY OF MEDICINE PROGRAMS AND SERVICES FISCAL YEAR 2003 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE BETHESDA, MARYLAND National Library of Medicine Catalog in Publication Z National Library of Medicine (U.S.) 675.M4 National Library of Medicine programs and services.– U56an 1977- .–Bethesda, Md. : The Library, [1978- v.: ill., ports. Report covers fiscal year. Continues: National Library of Medicine (U.S.). Programs and Services. Vols. For 1977-78 issued as DHEW publication; no. (NIH) 78-256, etc.; for 1979-80 as NIH publication; no. 80-256, etc. Vols. For 1981-available from the National Technical Information Service, Springfield, Va. ISSN 0163-4569 = National Library of Medicine programs and services. 1. Information Services œ United States œ periodicals 2. Libraries, Medical œ United States œ periodicals I. Title II. Series: DHEW publication ; no. 80-256, etc. DISCRIMINATION PROHIBITED: Under provisions of applicable public laws enacted by Congress since 1964, no person in the United States shall, on the ground of race, color, national origin, sex, or handicap, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance.
    [Show full text]
  • Research Article MRI Guided Brain Stimulation Without the Use of a Neuronavigation System
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 647510, 8 pages http://dx.doi.org/10.1155/2015/647510 Research Article MRI Guided Brain Stimulation without the Use of a Neuronavigation System Ehsan Vaghefi,1 Peng Cai,2 Fang Fang,2 Winston D. Byblow,3 Cathy M. Stinear,4 and Benjamin Thompson1,5 1 Department of Optometry and Vision Science, University of Auckland, Building 502, Level 4, 85 Park Road, Grafton, Auckland 1023, New Zealand 2 Department of Psychology, Peking University, Haidian Road, Haidian, Beijing 100871, China 3 Department of Sport and Exercise Science, University of Auckland, Symonds Street, Auckland 1023, New Zealand 4 Department of Medicine, University of Auckland, Symonds Street, Auckland 1023, New Zealand 5 SchoolofOptometryandVisionScience,UniversityofWaterloo,200ColumbiaStreetW,Waterloo,ON,CanadaN2L3G1 Correspondence should be addressed to Ehsan Vaghefi; [email protected] Received 23 June 2014; Revised 13 August 2014; Accepted 9 September 2014 Academic Editor: Zhengchao Dong Copyright © 2015 Ehsan Vaghefi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system.
    [Show full text]
  • Download Them
    Bodies of Information: Reinventing Bodies and Practice in Medical Education Rachel Prentice A.B., Comparative Literature, Columbia University New York, New York, 1987 Submitted to the Program in Science, Technology, and Society in Partial Fulfillment of the requirements for the Degree of Doctor of Philosophy In this History and Social Studies of Science and Technology At the Massachusetts Institute of Technology [:1.x'e d-e"X)t-U May 2004 © Copyright Rachel Prentice. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this document in whole or in part. /! /'1/7 /) Signature of Author . '(;611 ~ - - Program in the History aneOfucial Study of§cience and Technology r? /J . Certified by~ . _ Sherry Turkle, PreJfess6l{bf the Social Studies of Science and Technology May 27, 2004 ~~) Joseph Dumit Associate Professor ~~OPOI~dScience and Technology Studies. (S!S) /' ~ Hugh Gusterson -+--+--+-----.'''0---'---'''-------------===---­ Associate Professor of A tmo a 0 y and ~~ience a ~~ Evelynn M. Hammonds _ ) Professor of the History of Science and "frican and African American Studies (Harvard) MASSACHUSETTS IN OF TECHNOLOGY ." ARCttIVES!, ';. , JC~ 0 1 200~ lt _._. _ ~ . ~ ~ ?/:.RIF:: S - --' ~.- .•_---- BODIES OF INFORMATION Reinventing Bodies and Practice in Medical Education By Rachel Prentice A.B., Comparative Literature Columbia University, 1987 SUBMITTED TO THE DEPARTMENT OF SCIENCE, TECHNOLOGY AND SOCIETY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE, TECHNOLOGY AND SOCIETY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2004 © Rachel Prentice. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies ofthis thesis document in whole or in part.
    [Show full text]
  • Validation of Electromagnetic CAD Human Phantoms
    Validation of Electromagnetic CAD Human Phantoms by Harshal Tankaria A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Master of Science In Electrical and Computer Engineering April 2017 APPROVED: Dr. Sergey Makarov ___________________________________ Worcester Polytechnic Institute Dr. Gregory Noetscher ____________________________________ US Army Natick Soldier Research, Development, and Engineering Center Dr. Janakinadh Yanamadala ____________________________________ MathWorks, Inc. To my parents ii Abstract About fifty years ago, research began in the field of computational human phantoms primarily for radiation dose calculations. This field has grown exponentially due to the potential for solving complicated medical problems. Modeling electromagnetic, structural, thermal, and acoustic response of the human body to different internal and external stimuli has been limited by the availability of numerically efficient computational human models. This study describes the recent development of a computational full-body human phantom –Visible Human Project (VHP)–Female Model. This human phantom has been validated for certain frequencies in the ISM band and beyond. The anatomical accuracy of the phantom is established by comparing the CAD phantom with the original VHP image dataset. This thesis also applies the VHP – Female CAD Model (version 3.1) for investigating the effects of MRI radiation. The simulation environment ANSYS HFSS is used for studying the effects of RF birdcage coil on the human phantom. Finally, a non-ionizing technique for osteoporosis detection is investigated numerically. iii Acknowledgement First and foremost, I would like to express my sincere gratitude to Professor Sergey Makarov for his continuous advice, guidance and encouragement. He motivated me and brought the best out of me.
    [Show full text]
  • Life out of Sequence: a Data-Driven History of Bioinformatics
    Life Out of Sequence Life Out of Sequence: A Data-Driven History of Bioinformatics Hallam Stevens The University of Chicago Press :: Chicago and London Hallam Stevens is assistant professor at Nanyang Technological University in Singapore. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2013 by The University of Chicago All rights reserved. Published 2013. Printed in the United States of America 22 21 20 19 18 17 16 15 14 13 1 2 3 4 5 isbn-13: 978-0-226-08017-8 (cloth) isbn-13: 978-0-226-08020-8 (paper) isbn-13: 978-0-226-08034-5 (e-book) doi: 10.7208/chicago/9780226080345.001.0001 Library of Congress Cataloging-in-Publication Data Stevens, Hallam. Life out of sequence : a data-driven history of bioinformatics / Hallam Stevens. pages. cm. Includes bibliographical references and index. isbn 978-0-226-08017-8 (cloth : alk. paper) — isbn 978-0-226- 08020-8 (pbk. : alk. paper) — isbn 978-0-226-08034-5 (e-book) 1. Bioinformatics—History. I. Title. qh324.2.s726 2013 572′.330285—dc23 2013009937 This paper meets the requirements of ansi/niso z39.48-1992 (Permanence of Paper). For my parents If information is pattern, then noninformation should be the absence of pattern, that is, randomness. This commonsense expectation ran into unexpected com- plications when certain developments within information theory implied that information could be equated with randomness as well as pattern. Identifying information with both pattern and randomness proved to be a powerful para- dox, leading to the realization that in some instances, an infusion of noise into a system can cause it to reorganize at a higher level of complexity.
    [Show full text]
  • Film Style and Narration in Rashomon
    Film style and narration in Rashomon Nick Redfern Department of Media, Film & Culture, Leeds Trinity University, Brownberrie Lane, Horsforth, Leeds LS18 5HD, UK. n.redfern {at} leedstrinity.ac.uk https://leedstrinity.academia.edu/NickRedfern Abstract This article analyses the use of film style in Rashomon (Kurosawa Akira, 1950) to determine whether the different accounts of the rape and murder provided by the bandit, the wife, the husband and the woodcutter are formally distinct by comparing shot length data and using multiple correspondence analysis (MCA) to look for relationships between shot scale, camera movement, camera angle and the use of point-of-view (POV) shots, reverse-angle (RA) cuts and axial cuts. The results show that the four accounts of the rape and the murder in Rashomon differ not only in their content but also in the way they are narrated. The editing pace varies so that although the action of the film is repeated the presentation of events to the viewer is different each time. Different types of shot are used to create the narrative perspectives of the bandit, the wife and the husband that marks them out as either active or passive narrators reflecting their level of narrative agency within the film, hibits both active and passive aspects to create an ambiguous mode of narration. Rashomon is a deliberately and precisely constructed artworkwhile the in woodcutterswhich form and account content ex work together to create an epistemological puzzle for the viewer. Keywords: Kurosawa Akira, Rashomon, narration, film style, statistical analysis, multiple correspondence analysis This is a post-print of an article published as: Film Style and Narration in Rashomon, Journal of Japanese and Korean Cinema 5 (1-2) 2013: 21-36.
    [Show full text]