Opposite Regulation of Wnt/Β-Catenin and Shh Signaling Pathways by Rack1 Controls Mammalian Cerebellar Development

Total Page:16

File Type:pdf, Size:1020Kb

Opposite Regulation of Wnt/Β-Catenin and Shh Signaling Pathways by Rack1 Controls Mammalian Cerebellar Development Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development Haihong Yanga,1, Qian Zhua,1, Juanxian Chenga, Yan Wua, Ming Fana,b,c, Jiyan Zhangd,2, and Haitao Wua,b,c,2 aDepartment of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; bChinese Institute for Brain Research, 102206 Beijing, China; cKey Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019 Jiangsu Province, China; and dDepartment of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China Edited by Mary E. Hatten, The Rockefeller University, New York, NY, and approved January 18, 2019 (received for review August 2, 2018) The development of the cerebellum depends on intricate processes blastoma, the most common type of pediatric malignant primary of neurogenesis, migration, and differentiation of neural stem cells brain tumor (16, 17). In addition, GNP differentiation and cer- (NSCs) and progenitor cells. Defective cerebellar development often ebellar vermis formation are regulated by Wnt/β-catenin signal- results in motor dysfunctions and psychiatric disorders. Understand- ing in the rhombic lip (RL), in the ventricular zone, and in early ing the molecular mechanisms that underlie the complex develop- migrating GNPs (18–20). Several other molecules, such as FGF8 ment of the cerebellum will facilitate the development of novel (21, 22), contactin (23), Reelin (24), Gbx2 (25), Zic1/2 (26), En1/ treatment options. Here, we report that the receptor for activated C 2 (27), and neurofibromin 1 (28), have also been implicated in kinase (Rack1), a multifaceted signaling adaptor protein, regulates cerebellar development. However, the particular intracellular mammalian cerebellar development in a cell type-specific manner. signaling pathways that coordinate and integrate those mor- Selective deletion of Rack1 in mouse NSCs or granule neuron phogenic signals are not well understood. Furthermore, genetic progenitors (GNPs), but not Bergmann glial cells (BGs), causes pathways that determine the formation and patterning of cere- severe defects in cerebellar morphogenesis, including impaired folia bellar fissures remain unresolved. and fissure formation. NSCs and GNPs lacking Rack1 exhibit en- The receptor for activated C kinase 1 (Rack1) is a multifaceted β NEUROSCIENCE hanced Wnt/ -catenin signaling but reduced Sonic hedgehog (Shh) scaffolding protein with seven conserved WD40-repeat (WDR) β signaling. Simultaneous deletion of -catenin in NSCs, but not GNPs, domains, which was originally identified as an anchoring protein Rack1 significantly rescues the mutant phenotype. Interestingly, for the conventional protein kinase C (PKC) (29, 30). Mice Rack1 controls the activation of Shh signaling by regulating the lacking Rack1 are embryonic lethal at the gastrulation stage, ubiquitylation and stability of histone deacetylase 1 (HDAC1)/ suggesting it is crucial for mammalian development (31). In the HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cer- central nervous system (CNS), Rack1 is involved in the regulation ebellum phenocopies the Rack1 mutant. Together, these results re- of neurite outgrowth and dendritic transport, long-term potenti- veal a previously unknown role of Rack1 in controlling mammalian + ation initiation, intracellular Ca2 release, synaptic transmission, cerebellar development by opposite regulation of Wnt/β-catenin and and neurodegenerative processes, suggesting a critical role of Rack1 Shh signaling pathways. Rack1 | neural stem cells | granule neuron progenitors | HDAC1/HDAC2 | Significance cerebellar morphogenesis The molecular mechanisms underlying cerebellar development erebellum morphogenesis is critically important in normal have not yet been fully understood. Here, we analyzed and Cbrain development. The developmental deficits of the cere- revealed a critical function of receptor for activated C kinase 1 bellum can result in motor and higher cognitive dysfunctions, (Rack1), a WD40-repeat domain containing scaffolding protein, including impaired balance control, language processing, sen- in the regulation of cerebellar patterning and fissure forma- – tion. We found that during embryonic and early postnatal sory/motor learning, and spatial memory (1 3). Cerebellar pat- β terning critically depends on neurogenesis, an intricate process development, Rack1 oppositely regulates Wnt/ -catenin and that involves the proliferation, migration, and differentiation of Sonic hedgehog (Shh) signaling pathways in distinct develop- mental stages. Interestingly, we also found that Rack1-mediated neural stem cells (NSCs) and progenitor cells (4, 5). The ap- stabilization of histone deacetylase 1 (HDAC1)/HDAC2 is es- pearance of granule neuron progenitors (GNPs) over the surface sential for the activation of Shh signaling in granule neuron of the cerebellum was identified as a key feature of cerebellar progenitors during cerebellar development. Together, we have development (6). The coordinated interaction between NSCs, demonstrated the crucial role of Rack1 for cerebellar morpho- GNPs, Purkinje cells (PCs), and Bergmann glia cells (BGs) re- genesis by homeostatic regulation of two distinct morphogenic fines the developing cerebellum into the typical pattern of pathways. 10 folia and a three-layered cerebellar cortex, which includes the external molecular layer (ML), the middle Purkinje cell layer Author contributions: H.W. designed research; H.Y., Q.Z., J.C., and Y.W. performed re- (PCL), and the innermost internal granular layer (IGL) (4, 7, 8). search; J.Z. contributed new reagents/analytic tools; H.Y., Q.Z., M.F., and H.W. analyzed The cellular organization and signaling assembly of the cere- data; and H.Y. and H.W. wrote the paper. bellar cortex constitute an ideal model for studying neuronal The authors declare no conflict of interest. properties and cortical circuitry formation. This article is a PNAS Direct Submission. The proliferation, migration, and differentiation of GNPs is Published under the PNAS license. temporally and spatially regulated during cerebellum develop- 1H.Y. and Q.Z. contributed equally to this work. ment. PCs control the proliferation of GNPs by releasing dif- 2To whom correspondence may be addressed. Email: [email protected] or wuht@ fusible factors, such as insulin-like and epidermal growth factors bmi.ac.cn. (8–11) and Sonic hedgehog (Shh), a predominant player in This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. cerebellar patterning (12–15). Constitutive activation of Shh 1073/pnas.1813244116/-/DCSupplemental. signaling in GNPs may contribute to the formation of medullo- www.pnas.org/cgi/doi/10.1073/pnas.1813244116 PNAS Latest Articles | 1of10 Downloaded by guest on September 27, 2021 for normal brain functions (32). Rack1 is abundantly coexpressed with PKC-βII, an isozyme of PKC, in select brain regions, including the cerebellum (33). Nevertheless, the exact function of Rack1 in the cerebellum remains elusive. Intriguingly, previous studies in gastric cancer cells show that Rack1 represses Wnt/β-catenin transcriptional activity and promotes β-catenin degradation by stabilizing the β-catenin destruction complex (34). In contrast, Rack1 activates Shh signaling by activating the Smoothened receptor in non-small cell lung cancer cells (35). Thus, we hypothesized that Rack1 might be critical for cerebellar development by simulta- neously targeting both Wnt/β-catenin and Shh signaling pathways. In this study, we demonstrated that Wnt/β-catenin and Shh sig- naling pathways were oppositely regulated by Rack1 during distinct stages of cerebellar development in a cell type-specific manner. Ablation of Rack1 expression in either NSCs or GNPs disrupts cerebellar morphogenesis. Simultaneous removal of Rack1 and β-catenin in NSCs significantly rescues cerebellar developmental deficits, consistent with the notion that Rack1 inhibits Wnt/ β-catenin signaling. Moreover, we found Rack1-mediated stabi- lization of histone deacetylase 1 (HDAC1)/HDAC2 is essential for the activation of Shh signaling. Suppression of HDAC1/HDAC2 activity in the neonatal cerebellum severely disrupts cerebellar folia formation and GNP proliferation, phenocopying NSC- or GNP- F/F specific Rack1 knockouts (KOs). Taken together, our findings re- Fig. 1. hGFAP-Cre;Rack1 mutant mice display impaired cerebellar mor- phogenesis. (A) Nissl staining of sagittal histological sections of the vermis veal a crucial role of Rack1-mediated opposite regulation of Wnt/ F/F β-catenin and Shh signaling pathways during cerebellar development. shows considerable cerebellar foliation defects in hGFAP-Cre;Rack1 mu- tant mice at the indicated postnatal developmental stages. a, anterior; d, Results dorsal; p, posterior; v, ventral. (Scale bar: 1 mm.) (B) Area of sagittal sections of the cerebellar vermis in Rack1F/F control and hGFAP-Cre;Rack1F/F mutant Ablation of Rack1 in Multipotent NSCs Disrupts Cerebellar mice (mean ± SEM; P = 0.67, **P = 0.0035, **P = 0.0022, and **P = 0.0011, Development. Consistent with high cerebellar proliferation in respectively; n = 4). n.s., not significant. (C) Number of observed lobules in early postnatal development (5, 12), we found relatively high control and mutant mice at the indicated postnatal developmental stages Rack1 expression levels in the external granular layer (EGL) at (mean ± SEM; **P < 0.0001, n =
Recommended publications
  • Downloaded from the National Database for Autism Research (NDAR)
    International Journal of Molecular Sciences Article Phenotypic Subtyping and Re-Analysis of Existing Methylation Data from Autistic Probands in Simplex Families Reveal ASD Subtype-Associated Differentially Methylated Genes and Biological Functions Elizabeth C. Lee y and Valerie W. Hu * Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-202-994-8431 Current address: W. Harry Feinstone Department of Molecular Microbiology and Immunology, y Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA. Received: 25 August 2020; Accepted: 17 September 2020; Published: 19 September 2020 Abstract: Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group.
    [Show full text]
  • Molecular Genetic Delineation of 2Q37.3 Deletion in Autism and Osteodystrophy: Report of a Case and of New Markers for Deletion Screening by PCR
    UC Irvine UC Irvine Previously Published Works Title Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR. Permalink https://escholarship.org/uc/item/83f0x61r Journal Cytogenetics and cell genetics, 94(1-2) ISSN 0301-0171 Authors Smith, M Escamilla, JR Filipek, P et al. Publication Date 2001 DOI 10.1159/000048775 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Original Article Cytogenet Cell Genet 94:15–22 (2001) Molecular genetic delineation of 2q37.3 deletion in autism and osteodystrophy: report of a case and of new markers for deletion screening by PCR M. Smith, J.R. Escamilla, P. Filipek, M.E. Bocian, C. Modahl, P. Flodman, and M.A. Spence Department of Pediatrics, University of California, Irvine CA (USA) Abstract. We recently studied a patient who meets criteria us to determine the parental origin of the deletion in our for autistic disorder and has a 2q37 deletion. Molecular cyto- patient. DNA from 8–13 unrelated individuals was used to genetic studies were carried out using DNA isolated from 22 determine heterozygosity estimates for these markers. We re- different 2q37 mapped BACs to more precisely define the view four genes deleted in our patient – genes whose known extent of the chromosome deletion. We also analyzed 2q37 functions and sites of expression in the brain and/or bone make mapped polymorphic markers. In addition DNA sequences of them candidates for involvement in autism and/or the osteo- BACs in the deletion region were scanned to identify microsa- dystrophy observed in patients with 2q37.3 deletions.
    [Show full text]
  • Role of Sonic Hedgehog Signaling Pathway in Neuroblastoma Development
    Review Article Biology and Medicine, 1 (4): Rev2, 2009 eISSN: 09748369, www.biolmedonline.com Role of Sonic hedgehog signaling pathway in neuroblastoma development Mehdi Hayat Shahi1,2,3,§, Subrata Sinha2, *Mohammad Afzal3, *Javier S Castresana1 1Unidad de Biologia de Tumoures Cerebrales, Universidad de Navarra, 31008 Pamplona, Spain. 2Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi-110029, India. 3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India. §Present address: Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, Uppsala- 75185, Sweden. *Corresponding Authors: Javier S Castresana, [email protected] Mohammad Afzal, [email protected] Abstract Malignant transformation of normal cells is a complex and accumulative process. Understanding this event gives insight into mechanisms of developmental biology and physical interaction of cellular machinery with surrounding ambient factors. However, the trend of embryonic malignancy is not interactive with ambient factors, rather a cause of deregulations of internal developmental process. In this review, we have attempted to explore the possibility of Sonic hedgehog role (Shh) in the development of neuroblastoma tumour. It is the major extra cranial tumour and develops in very early stage of childhood. Sonic hedgehog signaling is very well studied in another major childhood tumour i.e. medulloblastoma that contributes 20-25% of childhood tumours, and one-fourth of medulloblastoma is due to abnormality in the Shh signaling pathway. Therefore, we would consider whether Shh could also contribute to the development of neuroblastoma. Although scientists are coming up with the role of Shh in the neuroblastoma, the Sonic hedgehog signaling is very much one of the promising pathways because of its multi-dimensional role not only in CNS development but also in organogenesis and other major tumour development.
    [Show full text]
  • Sonic Hedgehog Signaling Limits Atopic Dermatitis Via Gli2-Driven Immune Regulation
    Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation Eleftheria Papaioannou, … , Ryan F. L. O’Shaughnessy, Tessa Crompton J Clin Invest. 2019. https://doi.org/10.1172/JCI125170. Research Article Immunology Inflammation Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin, and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–b (TGF-b) in Tregs signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy. Find the latest version: http://jci.me/125170/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation Eleftheria Papaioannou,1 Diana C. Yánez,1,2 Susan Ross,1 Ching-In Lau,1 Anisha Solanki,1 Mira Manilal Chawda,1 Alex Virasami,1 Ismael Ranz,3 Masahiro Ono,1,4 Ryan F.
    [Show full text]
  • Agonists Regulate the Expression of Stemness and Differentiation Genes in Brain Tumour Stem Cells
    British Journal of Cancer (2012) 106, 1702–1712 & 2012 Cancer Research UK All rights reserved 0007 – 0920/12 www.bjcancer.com PPARg agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells E Pestereva1, S Kanakasabai1 and JJ Bright*,1,2 1 Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, 1800 North Capitol Avenue, Noyes Building E504C, 2 Indianapolis, IN 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA BACKGROUND: Brain tumour stem cells (BTSCs) are a small population of cancer cells that exhibit self-renewal, multi-drug resistance, and recurrence properties. We have shown earlier that peroxisome proliferator-activated receptor gamma (PPARg) agonists inhibit the expansion of BTSCs in T98G and U87MG glioma. In this study, we analysed the influence of PPARg agonists on the expression of stemness and differentiation genes in BTSCs. METHODS: The BTSCs were isolated from T98G and DB29 glioma cells, and cultured in neurobasal medium with epidermal growth factor þ basic fibroblast growth factor. Proliferation was measured by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2 H-5- tetrazolio]-1,3-benzene disulphonate) and 3H thymidine uptake assays, and gene expression was analysed by quantitative reverse– transcription PCR and Taqman array. The expression of CD133, SRY box 2, and nanog homeobox (Nanog) was also evaluated by western blotting, immunostaining, and flow cytometry. 12,14 RESULTS: We found that PPARg agonists, ciglitazone and 15-deoxy-D -ProstaglandinJ2, inhibited cell viability and proliferation of þ T98G- and DB29-BTSCs. The PPARg agonists reduced the expansion of CD133 BTSCs and altered the expression of stemness and differentiation genes.
    [Show full text]
  • PDF Download
    Review Xatzipsalti Maria et al. Congenital Hypopituitarism: Various Genes, … Horm Metab Res 2018; 00: 00–00 Congenital Hypopituitarism: Various Genes, Various Phenotypes Authors Maria Xatzipsalti1, 2, Antonis Voutetakis1, Lela Stamoyannou2, George P. Chrousos1, Christina Kanaka-Gantenbein1 Affiliations ABSTRacT 1 Division of Endocrinology, Diabetes and Metabolism, The ontogenesis and development of the pituitary gland is a First Department of Pediatrics, Medical School, National highly complex process that depends on a cascade of transcrip- and Kapodistrian University of Athens, “Aghia Sofia” tion factors and signaling molecules. Spontaneous mutations Children's Hospital, Athens, Greece and transgenic murine models have demonstrated a role for 2 First Department of Pediatrics, “Aglaia Kyriakou” many of these factors, including HESX1, PROP1, PIT1, LHX3, Children's Hospital, Athens, Greece LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, SHH, GLI2, and FGF8 in the etiology of congenital hypopituitarism. Genetic muta- Key words tions in any of these factors can lead to congenital hypopitui- pituitary, combined pituitary hormone deficiency, congenital tarism, which is characterized by the deficiency in one or more hypopituitarism, transcription factors, syndromic hypopitui- pituitary hormones. The phenotype can be highly variable, tarism, non-syndromic hypopituitarism consisting of isolated hypopituitarism or more complex disor- ders. The same phenotype can be attributed to different gene received 27.03.2018 mutations; while a given gene mutation can
    [Show full text]
  • FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes
    cells Article FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes Miriam Pagin 1,† , Mattias Pernebrink 2,3,†, Mattia Pitasi 1, Federica Malighetti 1, Chew-Yee Ngan 4, Sergio Ottolenghi 1, Giulio Pavesi 5, Claudio Cantù 2,3,* and Silvia K. Nicolis 1,* 1 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; [email protected] (M.P.); [email protected] (M.P.); [email protected] (F.M.); [email protected] (S.O.) 2 Wallenberg Centre for Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden; [email protected] 3 Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden 4 The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; [email protected] 5 Department of Biosciences, University of Milano, Via Celoria 26, 20134 Milano, Italy; [email protected] * Correspondence: [email protected] (C.C.); [email protected] (S.K.N.) † Joint first authors. Abstract: The transcription factor SOX2 is important for brain development and for neural stem Citation: Pagin, M.; Pernebrink, M.; cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after Pitasi, M.; Malighetti, F.; Ngan, C.-Y.; few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Ottolenghi, S.; Pavesi, G.; Cantù, C.; Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully Nicolis, S.K.
    [Show full text]
  • Figure S1. Basic Information of RNA-Seq Results. (A) Bar Plot of Reads Component for Each Sample
    Figure S1. Basic information of RNA-seq results. (A) Bar plot of reads component for each sample. (B) Dot plot shows the principal component analysis (PCA) of each sample. (C) Venn diagram of DEGs for three time points, the overlap part of the circles represents common differentially expressed genes between combinations. Figure S2. Scatter plot of DEGs for each time point. The X and Y axes represent the logarithmic value of gene expression. Red represents up-regulated DEG, blue represents down-regulated DEG, and gray represents non-DEG. Table S1. Primers used for quantitative real-time PCR analysis of DEGs. Gene Primer Sequence Forward 5’-CTACGAGTGGATGGTCAAGAGC-3’ FOXO1 Reverse 5’-CCAGTTCCTTCATTCTGCACACG-3’ Forward 5’-GACGTCCGGCATCAGAGAAA-3’ IRS2 Reverse 5’-TCCACGGCTAATCGTCACAG-3’ Forward 5’-CACAACCAGGACCTCACACC-3’ IRS1 Reverse 5’-CTTGGCACGATAGAGAGCGT-3’ Forward 5’-AGGATACCACTCCCAACAGACCT-3’ IL6 Reverse 5’-CAAGTGCATCATCGTTGTTCATAC-3’ Forward 5’-TCACGTTGTACGCAGCTACC-3’ CCL5 Reverse 5’-CAGTCCTCTTACAGCCTTTGG-3’ Forward 5’-CTGTGCAGCCGCAGTGCCTACC-3’ BMP7 Reverse 5’-ATCCCTCCCCACCCCACCATCT-3’ Forward 5’-CTCTCCCCCTCGACTTCTGA-3’ BCL2 Reverse 5’-AGTCACGCGGAACACTTGAT-3’ Forward 5’-CTGTCGAACACAGTGGTACCTG-3’ FGF7 Reverse 5’-CCAACTGCCACTGTCCTGATTTC-3’ Forward 5’-GGGAGCCAAAAGGGTCATCA-3’ GAPDH Reverse 5’-CGTGGACTGTGGTCATGAGT-3’ Supplementary material: Differentially expressed genes log2(SADS-CoV_12h/ Qvalue (SADS-CoV _12h/ Gene Symbol Control_12h) Control_12h) PTGER4 -1.03693 6.79E-04 TMEM72 -3.08132 3.66E-04 IFIT2 -1.02918 2.11E-07 FRAT2 -1.09282 4.66E-05
    [Show full text]
  • Nuclear Factor-KB Contributes to Hedgehog Signaling Pathway Activation Through Sonic Hedgehog Induction in Pancreatic Cancer
    Research Article Nuclear Factor-KB Contributes to Hedgehog Signaling Pathway Activation through Sonic Hedgehog Induction in Pancreatic Cancer Hiroshi Nakashima,1 Masafumi Nakamura,1 Hiroshi Yamaguchi,2 Naoki Yamanaka,1 Takashi Akiyoshi,1 Kenichiro Koga,1 Koji Yamaguchi,3 Masazumi Tsuneyoshi,2 Masao Tanaka,3 and Mitsuo Katano1 Departments of 1Cancer Therapy and Research, 2Anatomic Pathology, and 3Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan Abstract The hedgehog (Hh) signaling pathway is crucial to growth and The hedgehog (Hh) signaling pathway, which functions as an patterning in a wide variety of tissues during embryonic organizer in embryonic development, is implicated in the development (3, 4). Of three Hh ligands, sonic Hh (Shh), Indian development of various tumors. In pancreatic cancer, pathway Hh (Ihh), and desert Hh (Dhh), Shh is reported to play an essential activation is reported to result from aberrant expression of role in the development of pancreatic cancer as well as pancreatic organogenesis (5, 6). Shh undergoes extensive post-translational the ligand, sonic Hh (Shh). However, the details of the mechanisms regulating Shh expression are not yet known. modifications to become biologically active (7). The signal peptide We hypothesized that nuclear factor-KB (NF-KB), a hallmark is cleaved from the precursor form of Shh to yield the 45-kDa transcription factor in inflammatory responses, contributes to full-length form. Further processing of this molecular form of Shh the overexpression of Shh in pancreatic cancer. In the present generates a 19-kDa amino and 26-kDa COOH-terminal peptides. study, we found a close positive correlation between NF-KB The 19-kDa NH2-terminal peptide undergoes COOH-terminal p65 and Shh expression in surgically resected pancreas esterification to a cholesterol molecule before being secreted into specimens, including specimens of chronic pancreatitis and the extracellular spaces where it mediates the physiologic actions pancreatic adenocarcinoma.
    [Show full text]
  • The Sonic Hedgehog Signaling System As a Bistable Genetic Switch
    2748 Biophysical Journal Volume 86 May 2004 2748–2757 The Sonic Hedgehog Signaling System as a Bistable Genetic Switch Karen Lai, Matthew J. Robertson, and David V. Schaffer Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, California ABSTRACT Sonic hedgehog (Shh) controls critical cellular decisions between distinct fates in many systems, particularly in stem cells. The Shh network functions as a genetic switch, and we have theoretically and computationally analyzed how its structure can endow it with the ability to switch fate choices at a threshold Shh concentration. The network is composed of a positive transcriptional feedback loop embedded within a negative signaling feedback loop. Specifically, positive feedback by the transcription factor Gli, which upregulates its own expression, leads to a switch that can adopt two distinct states as a function of Shh. However, Gli also upregulates the signaling repressor Patched, negative feedback that reins in the strong Gli autoregulatory loop. Mutations that have been associated with cancer are predicted to yield an irreversible switch to a high Gli state. Finally, stochastic simulation reveals the negative Patched feedback loop serves a critical function of dampening Gli fluctuations to reduce spontaneous state switching and preserve the network’s robust, switch-like behavior. Tightly linked positive and negative feedback loops are present in many signaling systems, and the Shh system is therefore likely representative of a large set of gene regulation networks that control stem cell fate throughout development and into adulthood. INTRODUCTION Throughout development and adulthood, cells are exposed to development by forming a concentration gradient, a phe- complex regulatory signals and must correctly interpret these nomenon best characterized in the neural tube and spinal signals to implement necessary functional decisions.
    [Show full text]
  • Mouse Thalamic Differentiation: Gli-Dependent Pattern and Gli-Independent Prepattern
    ORIGINAL RESEARCH ARTICLE published: 22 February 2012 doi: 10.3389/fnins.2012.00027 Mouse thalamic differentiation: Gli-dependent pattern and Gli-independent prepattern Roberta Haddad-Tóvolli 1, Michael Heide 1, Xunlei Zhou 1, Sandra Blaess 2 and Gonzalo Alvarez-Bolado1* 1 Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany 2 Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany Edited by: Sonic hedgehog (Shh) signaling is essential for thalamic development.The Gli transcription Steffen Scholpp, Karlsruhe Institute of factors act downstream of Shh – while Gli2 is the major activator (GliA), Gli3 acts primarily Technology, Germany as a repressor (GliR). The thalamus is remarkable among dorsal structures because of its Reviewed by: Tomomi Shimogori, RIKEN Brain proximity to the mid-diencephalic organizer, a unique dorsal Shh source. This lends com- Science Institute, Japan plexity to the interactions between Shh, Gli2, and Gli3, suggesting the presence of a dorsal David J. Price, University of Gli activator which elsewhere is found only ventrally, and making the dissection of thala- Edinburgh, UK mic Gli functions particularly interesting. A current model based on mutant phenotypes in *Correspondence: telencephalon and midbrain postulates a degree of reciprocal antagonism of Shh and Gli3 Gonzalo Alvarez-Bolado, Department of Neuroanatomy, Institute of in dorsal brain regions. To approach the role of Gli factors in thalamic specification we first Anatomy and Cell Biology, University analyzed mice deficient in Gli2 or Gli3.InGli2 mutants, the thalamus is small and poorly of Heidelberg, Im Neuenheimer Feld differentiated with the exception of the medial and intralaminar nuclei which, in contrast, 307, 69120 Heidelberg, Germany.
    [Show full text]
  • Zeb2 Regulates Cell Fate at the Exit from Epiblast State In
    View metadata, citation and similar papers at core.ac.uk EMBRYONIC STEM CELLS/INDUCEDbrought to you by CORE PLURIPOTENT STEMprovidedC byELLS Ghent University Academic Bibliography Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells aDepartment of Development and Regeneration, KU a a,b c,d,e,f a b Leuven, Leuven 3000, AGATA STRYJEWSKA, RUBEN DRIES, TIM PIETERS, GRIET VERSTAPPEN, ANDREA CONIDI, a a a b,g Belgium; bDepartment of Cell KATHLEEN CODDENS, ANNICK FRANCIS, LIEVE UMANS, WILFRED F. J. VAN IJCKEN, g d,e h b c,d,e,i Biology, Center for Biomics, GEERT BERX, LEO A. VAN GRUNSVEN, FRANK G. GROSVELD, STEVEN GOOSSENS, c,d,i a,b Erasmus University Medical JODY J. HAIGH, DANNY HUYLEBROECK Center, Rotterdam 3015 CN, c The Netherlands; VIB Key Words. Cell differentiation • DNA-methylation • Embryonic stem cells • Pluripotent stem cells Inflammation Research • Repressors • RNA-sequencing • Transcription factors • Transcriptom Center (IRC), Unit Vascular Cell Biology, dDepartment of Biomedical Molecular Biology, eVIB-IRC, Unit ABSTRACT Molecular and Cellular In human embryonic stem cells (ESCs) the transcription factor Zeb2 regulates neuroectoderm ver- Oncology, Ghent University, sus mesendoderm formation, but it is unclear how Zeb2 affects the global transcriptional regulato- f Ghent 9052, Belgium; Center ry network in these cell-fate decisions. We generated Zeb2 knockout (KO) mouse ESCs, subjected for Medical Genetics, Ghent them as embryoid bodies (EBs) to neural and general differentiation and carried out temporal University Hospital, Ghent h RNA-sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS) analysis in neu- 9000, Belgium; Department ral differentiation.
    [Show full text]