Hedgehog Signaling: Networking to Nurture a Promalignant Tumor Microenvironment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development. -
Role of Sonic Hedgehog Signaling Pathway in Neuroblastoma Development
Review Article Biology and Medicine, 1 (4): Rev2, 2009 eISSN: 09748369, www.biolmedonline.com Role of Sonic hedgehog signaling pathway in neuroblastoma development Mehdi Hayat Shahi1,2,3,§, Subrata Sinha2, *Mohammad Afzal3, *Javier S Castresana1 1Unidad de Biologia de Tumoures Cerebrales, Universidad de Navarra, 31008 Pamplona, Spain. 2Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi-110029, India. 3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India. §Present address: Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, Uppsala- 75185, Sweden. *Corresponding Authors: Javier S Castresana, [email protected] Mohammad Afzal, [email protected] Abstract Malignant transformation of normal cells is a complex and accumulative process. Understanding this event gives insight into mechanisms of developmental biology and physical interaction of cellular machinery with surrounding ambient factors. However, the trend of embryonic malignancy is not interactive with ambient factors, rather a cause of deregulations of internal developmental process. In this review, we have attempted to explore the possibility of Sonic hedgehog role (Shh) in the development of neuroblastoma tumour. It is the major extra cranial tumour and develops in very early stage of childhood. Sonic hedgehog signaling is very well studied in another major childhood tumour i.e. medulloblastoma that contributes 20-25% of childhood tumours, and one-fourth of medulloblastoma is due to abnormality in the Shh signaling pathway. Therefore, we would consider whether Shh could also contribute to the development of neuroblastoma. Although scientists are coming up with the role of Shh in the neuroblastoma, the Sonic hedgehog signaling is very much one of the promising pathways because of its multi-dimensional role not only in CNS development but also in organogenesis and other major tumour development. -
Sonic Hedgehog Signaling Limits Atopic Dermatitis Via Gli2-Driven Immune Regulation
Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation Eleftheria Papaioannou, … , Ryan F. L. O’Shaughnessy, Tessa Crompton J Clin Invest. 2019. https://doi.org/10.1172/JCI125170. Research Article Immunology Inflammation Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin, and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–b (TGF-b) in Tregs signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy. Find the latest version: http://jci.me/125170/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation Eleftheria Papaioannou,1 Diana C. Yánez,1,2 Susan Ross,1 Ching-In Lau,1 Anisha Solanki,1 Mira Manilal Chawda,1 Alex Virasami,1 Ismael Ranz,3 Masahiro Ono,1,4 Ryan F. -
The Transcriptional Activator PAX3–FKHR
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The transcriptional activator PAX3–FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo Frédéric Relaix,1 Mariarosa Polimeni,2 Didier Rocancourt,1 Carola Ponzetto,3 Beat W. Schäfer,4 and Margaret Buckingham1,5 1CNRS URA 2375, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France; 2Department of Experimental Medicine, Section of Anatomy, University of Pavia, 27100 Pavia, Italy; 3Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, 10126 Turin, Italy; 4Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, CH-8032 Zurich, Switzerland Pax3 is a key transcription factor implicated in development and human disease. To dissect the role of Pax3 in myogenesis and establish whether it is a repressor or activator, we generated loss- and gain-of-function alleles by targeting an nLacZ reporter and a sequence encoding the oncogenic fusion protein PAX3–FKHR into the Pax3 locus. Rescue of the Pax3 mutant phenotypes by PAX3–FKHR suggests that Pax3 acts as a transcriptional activator during embryogenesis. This is confirmed by a Pax reporter mouse. However, mice expressing PAX3–FKHR display developmental defects, including ectopic delamination and inappropriate migration of muscle precursor cells. These events result from overexpression of c-met, leading to constitutive activation of Met signaling, despite the absence of the ligand SF/HGF. Haploinsufficiency of c-met rescues this phenotype, confirming the direct genetic link with Pax3. The gain-of-function phenotype is also characterized by overactivation of MyoD. -
Met Receptor Tyrosine Kinase: Enhanced Signaling Through Adapter Proteins
Oncogene (2000) 19, 5582 ± 5589 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Met receptor tyrosine kinase: enhanced signaling through adapter proteins Kyle A Furge1, Yu-Wen Zhang1 and George F Vande Woude*,1 1Van Andel Research Institute, 333 Bostwick, N.E., Grand Rapids, Michigan, MI 49503, USA The Met receptor tyrosine kinase is the prototypic matrix (`invasion') (Jeers et al., 1996c; Matsumoto et member of a small subfamily of growth factor receptors al., 1994; Rong et al., 1994; Weidner et al., 1990). In that when activated induce mitogenic, motogenic, and addition, HGF/SF-Met signaling can induce several morphogenic cellular responses. The ligand for Met is dierent epithelial and mesenchymal cell types to hepatocyte growth factor/scatter factor (HGF/SF) and undergo an involved dierentiation program termed while normal HGF/SF-Met signaling is required for branching morphogenesis when the cells are grown in a embryonic development, abnormal Met signaling has three dimensional matrix (Brinkmann et al., 1995; been strongly implicated in tumorigenesis, particularly in Jeers et al., 1996c; Montesano et al., 1991a; Niemann the development of invasive and metastatic phenotypes. et al., 1998). During branching morphogenesis, groups Following ligand binding and autophosphorylation, Met of cells proliferate, migrate, and dierentiate to form a transmits intercellular signals using a unique multi- connected series of tubules arranged like branches from substrate docking site present within the C-terminal a tree. However, even in the absense of a three end of the receptor. The multisubstrate docking site dimensional matrix, signaling through the Met receptor mediates the binding of several adapter proteins such as can induce morphogenesis and lumen formation in Grb2, SHC, Crk/CRKL, and the large adapter protein certain cell types (Jeers et al., 1996a; Tsarfaty et al., Gab1. -
Genomic Targeting of Epigenetic Probes Using a Chemically Tailored Cas9 System
Genomic targeting of epigenetic probes using a chemically tailored Cas9 system Glen P. Liszczaka, Zachary Z. Browna, Samuel H. Kima, Rob C. Oslunda, Yael Davida, and Tom W. Muira,1 aDepartment of Chemistry, Princeton University, Princeton, NJ 08544 Edited by James A. Wells, University of California, San Francisco, CA, and approved December 13, 2016 (received for review September 20, 2016) Recent advances in the field of programmable DNA-binding proteins Here, we report a method that combines the versatility of have led to the development of facile methods for genomic pharmacologic manipulation with the specificity of a genetically localization of genetically encodable entities. Despite the extensive programmable DNA-binding protein. Our strategy uses a utility of these tools, locus-specific delivery of synthetic molecules chemically tailored dCas9 to display a pharmacologic agent at a remains limited by a lack of adequate technologies. Here we combine genetic locus of interest in live mammalian cells (Fig. 1). This is trans the flexibility of chemical synthesis with the specificity of a pro- accomplished using split intein-mediated protein -splicing grammable DNA-binding protein by using protein trans-splicing to (PTS) to site-specifically link a recombinant dCas9:guide RNA ligate synthetic elements to a nuclease-deficient Cas9 (dCas9) (gRNA) complex to the synthetic cargo of choice (22). Indeed, in vitro and subsequently deliver the dCas9 cargo to live cells. we show that the remarkable specificity, efficiency, and speed of PTS allow the direct generation of desired dCas9 conjugates The versatility of this technology is demonstrated by delivering within the cell culture media, thereby facilitating a streamlined dCas9 fusions that include either the small-molecule bromodomain “one-pot” approach for genomic targeting of the reaction product. -
Paracrine Wnt1 Drives Interstitial Fibrosis Without Inflammation by Tubulointerstitial Cross-Talk
BASIC RESEARCH www.jasn.org Paracrine Wnt1 Drives Interstitial Fibrosis without Inflammation by Tubulointerstitial Cross-Talk † Omar H. Maarouf,* Anusha Aravamudhan,* Deepika Rangarajan,* Tetsuro Kusaba,* ‡ Victor Zhang,* Jeremy Welborn,* Daniel Gauvin,* Xiuyun Hou,* Rafael Kramann,* and † Benjamin D. Humphreys* § *Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; †Harvard Medical School, Boston, Massachusetts; ‡Division of Nephrology and Clinical Immunology and Medical Faculty, Rheinisch- Westfälische Technische Hochschule Aachen University, Aachen, Germany; and §Harvard Stem Cell Institute, Cambridge, Massachusetts ABSTRACT AKI with incomplete epithelial repair is a major contributor to CKD characterized by tubulointerstitial fibrosis. Injury–induced epithelial secretion of profibrotic factors is hypothesized to underlie this link, but the identity of these factors and whether epithelial injury is required remain undefined. We previously showed that activation of the canonical Wnt signaling pathway in interstitial pericytes cell autonomously drives myofibroblast acti- vation in vivo. Here, we show that inhibition of canonical Wnt signaling also substantially prevented TGFb– dependent myofibroblast activation in vitro. To investigate whether Wnt ligand derived from proximal tubule is sufficient for renal fibrogenesis, we generated a novel mouse strain with inducible proximal tubule Wnt1 secretion. Adult mice were treated with vehicle or tamoxifen and euthanized at 12 or 24 weeks postinjection. Compared -
Geometry, Epistasis, and Developmental Patterning
Geometry, epistasis, and developmental patterning Francis Corson and Eric Dean Siggia1 Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Eric Dean Siggia, February 6, 2012 (sent for review November 28, 2011) Developmental signaling networks are composed of dozens of (5) shows that even differentiation can be reversed. Yet they have components whose interactions are very difficult to quantify in provided a useful guide to experiments. an embryo. Geometric reasoning enumerates a discrete hierarchy These concepts admit a natural geometric representation, of phenotypic models with a few composite variables whose para- which can be formalized in the language of dynamical systems, meters may be defined by in vivo data. Vulval development in also called the geometric theory of differential equations (Fig. 1). ’ the nematode Caenorhabditis elegans is a classic model for the in- When the molecular details are not accessible, a system s effec- tegration of two signaling pathways; induction by EGF and lateral tive behavior may be represented in terms of a small number of signaling through Notch. Existing data for the relative probabilities aggregate variables, and qualitatively different behaviors enum- of the three possible terminal cell types in diverse genetic back- erated according to the geometrical structure of trajectories or grounds as well as timed ablation of the inductive signal favor topology. The fates that are accessible to a cell are associated with attractors—the valleys in Waddington’s “epigenetic landscape” one geometric model and suffice to fit most of its parameters. -
Paracrine Signaling Mediated at Cellcell Contacts
Insights & Perspectives Think again Paracrine signaling mediated at cellÀcell contacts Sougata Roy*,† and Thomas B. Kornberg Recent findings in several organ systems show that cytoneme-mediated systems. However, recent work that we signaling transports signaling proteins along cellular extensions and targets discuss here describes paracrine signal- cell-to-cell exchanges to synaptic contacts. This mechanism of paracrine ing that is instead contact-mediated and signaling may be a general one that is used by many (or all) cell types in many (or dependent on transient synapses that all) organs. We briefly review these findings in this perspective. We also non-neuronal cells make. These synap- describe the properties of several signaling systems that have previously been ses form at sites where specialized signaling filopodia called cytonemes interpreted to support a passive diffusion mechanism of signaling protein extend to contact target cells. dispersion, but can now be understood in the context of the cytoneme mechanism. Keywords: The classical model of .cytonemes; filopodia; morphogen; paracrine signaling; synapse; TGF-b paracrine signaling assumes that signals disperse by passive Introduction so that signals are within only 15À20 nm diffusion of their target receptors when they are Animal cells communicate over long released. Paracrine signaling, the third There are many paracrine signaling distances in various ways. Endocrine general mechanism, may be considered proteins that have been characterized. cells signal systemically by releasing to be a variant of endocrine signaling, They include the Fibroblast Growth hormones that disseminate in the vas- functioning at relatively short range Factors (FGFs) and other proteins that culature. Neurons also release signals, when secreted signals move limited activate Receptor Tyrosine Kinases, but they exchange information at syn- distances by passive diffusion in extra- TGF-b family members, Wnt proteins, apses that form where their axons and cellular fluid. -
Cell Communication and Signaling Mechanisms Terms to Learn
LQB383 Testbank Week 8 – Cell Communication and Signaling Mechanisms Terms to learn – match the terms to the definitions -------------------------------------------------------------------------------------------------------------------------- Adaptor Intracellular signaling protein Morphogen Endocrine cell Gap junction Neurotransmitter Hormone Receptor Extracellular signal molecule Signaling cascade Steroid hormone Synaptic signaling Paracrine signaling Second messenger Autocrine signaling Nuclear receptor family Interaction domain Contact-dependent signaling Definitions 1. General term for a protein that binds a specific extracellular molecule (ligand) and initiates a response in a cell. 2. Communicating cell-cell junction that allows ions and small molecules to pass from the cytoplasm of one cell to the cytoplasm of another. 3. Hydrophobic signaling molecule with characteristic four-ringed structure derived from cholesterol. 4. Short-range cell-cell communication via secreted local mediators that act on adjacent cells. 5. Specialised cell that secretes a hormone into the blood 6. The cell responds to its own secreted molecules. 7. Small signaling molecule secreted by the presynaptic nerve cell at a chemical synapse to relay the signal to the postsynaptic cell. 8. Small molecule that is formed in the cytosol, or released into it, in response to an extracellular signal, and that helps to relay the signal in the interior of the cell. 9. Molecule from the outside of the cell that communicates the behaviour or actions of other cells in the environment and elicits an appropriate response. 10. General term for a signal relay chain containing multiple amplification steps. 1 Receptor 2 Gap junction 3 Steroid hormone 4 Paracrine signaling 5 Endocrine cell 6 Autocrine signaling 7 Neurotransmitter 8 Second messenger 9 Extracellular signal molecule 10 Signaling cascade Multiple Choice Questions 1. -
Genetic Dissection of Developmental Pathways*§ †
Genetic dissection of developmental pathways*§ † Linda S. Huang , Department of Biology, University of Massachusetts-Boston, Boston, MA 02125 USA Paul W. Sternberg, Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125 USA Table of Contents 1. Introduction ............................................................................................................................1 2. Epistasis analysis ..................................................................................................................... 2 3. Epistasis analysis of switch regulation pathways ............................................................................ 3 3.1. Double mutant construction ............................................................................................. 3 3.2. Interpretation of epistasis ................................................................................................ 5 3.3. The importance of using null alleles .................................................................................. 6 3.4. Use of dominant mutations .............................................................................................. 7 3.5. Complex pathways ........................................................................................................ 7 3.6. Genetic redundancy ....................................................................................................... 9 3.7. Limits of epistasis ...................................................................................................... -
Paracrine Signaling by Progesterone ⇑ Renuga Devi Rajaram, Cathrin Brisken
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Infoscience - École polytechnique fédérale de Lausanne Molecular and Cellular Endocrinology xxx (2011) xxx–xxx Contents lists available at SciVerse ScienceDirect Molecular and Cellular Endocrinology journal homepage: www.elsevier.com/locate/mce Review Paracrine signaling by progesterone ⇑ Renuga Devi Rajaram, Cathrin Brisken Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC – Swiss Institute for Experimental Cancer Research, NCCR Molecular Oncology, SV2832 Station 19, CH-1015 Lausanne, Switzerland article info abstract Article history: Steroid hormones coordinate and control the development and function of many organs and are impli- Available online xxxx cated in many pathological processes. Progesterone signaling, in particular, is essential for several impor- tant female reproductive functions. Physiological effects of progesterone are mediated by its cognate Keywords: receptor, expressed in a subset of cells in target tissues. Experimental evidence has accumulated that pro- Progesterone receptor gesterone acts through both cell intrinsic as well as paracrine signaling mechanisms. By relegating the Paracrine signaling hormonal stimulus to paracrine signaling cascades the systemic signal gets amplified locally and signal- Uterus ing reaches different cell types that are devoid of hormone receptors. Interestingly, distinct biological Ovaries responses to progesterone in different target tissues rely on several tissue-specific and some common Mammary gland Carcinogenesis paracrine factors that coordinate biological responses in different cell types. Evidence is forthcoming that the intercellular signaling pathways that control development and physiological functions are important in tumorigenesis. Crown Copyright Ó 2011 Published by Elsevier Ireland Ltd. All rights reserved. Contents 1. Introduction . ....................................................................................................... 00 2.