The EGF Receptor Ligand Amphiregulin Controls Cell Division Via Foxm1

Total Page:16

File Type:pdf, Size:1020Kb

The EGF Receptor Ligand Amphiregulin Controls Cell Division Via Foxm1 Oncogene (2016) 35, 2075–2086 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE The EGF receptor ligand amphiregulin controls cell division via FoxM1 SW Stoll1, PE Stuart1, WR Swindell1, LC Tsoi2,BLi3, A Gandarillas4, S Lambert1, A Johnston1, RP Nair1 and JT Elder1,5 Epidermal growth factor receptor (EGFR) is central to epithelial cell physiology, and deregulated EGFR signaling has an important role in a variety of human carcinomas. Here we show that silencing of the EGF-related factor amphiregulin (AREG) markedly inhibits the expansion of human keratinocytes through mitotic failure and accumulation of cells with ⩾ 4n DNA content. RNA-sequencing- based transcriptome analysis revealed that tetracycline-mediated AREG silencing significantly altered the expression of 2331 genes, 623 of which were not normalized by treatment with EGF. Interestingly, genes irreversibly upregulated by suppression of AREG overlapped with genes involved in keratinocyte differentiation. Moreover, a significant proportion of the irreversibly downregulated genes featured upstream binding sites recognized by forkhead box protein M1 (FoxM1), a key transcription factor in the control of mitosis that is widely dysregulated in cancer. The downregulation of FoxM1 and its target genes preceded mitotic arrest. Constitutive expression of FoxM1 in AREG knockdown cells normalized cell proliferation, reduced the number of cells with ⩾ 4n DNA content and rescued expression of FoxM1 target genes. These results demonstrate that AREG controls G2/M progression and cytokinesis in keratinocytes via activation of a FoxM1-dependent transcriptional program, suggesting new avenues for treatment of epithelial cancer. Oncogene (2016) 35, 2075–2086; doi:10.1038/onc.2015.269; published online 3 August 2015 INTRODUCTION a variety of epithelial neoplasms and it may confer tumor cells 31–34 Epidermal homeostasis requires balance between keratinocyte with autonomous growth. proliferation and differentiation;1 however, the underlying regulatory The mechanisms by which AREG regulates proliferation remain network controlling this balance remains incompletely understood.2 to be elucidated. We recently reported that short hairpin RNA Epidermal growth factor receptor (EGFR) signaling is an important (shRNA)-mediated silencing of the AREG gene markedly inhibits regulator of epidermal development and homeostasis3–6 and has an keratinocyte growth in a manner that cannot be reversed by the addition of EGF or other EGFR ligands.9 Interestingly, AREG important role in the control of multiple keratinocyte functions 7,8 9 10–12 13,14 silencing results in the accumulation of flattened keratinocytes including migration, proliferation, differentiation, survival 9 15–17 that are often binucleated. In the present study, we set out to and activation of innate and adaptive immune responses. further elucidate the mechanism(s) by which proAREG controls Deregulated EGFR signaling is a hallmark of epithelial cancer,18 and 19–22 keratinocyte proliferation and differentiation. EGFR is a validated target in several types of carcinomas. EGFR Using conditional AREG knockdown keratinocytes9 in combina- becomes activated in response to binding members of the EGF tion with high-throughput RNA sequencing (RNA-seq) and 23 ligand family, several of which are expressed in human lentivirus-mediated gene expression, here we functionally impli- keratinocytes and skin including amphiregulin (AREG), betacellulin, cate forkhead box protein M1 (FoxM1), a winged helix transcrip- epigen, epiregulin, heparin-binding EGF-like growth factor tion factor,35 as a key mediator of AREG’s effects upon (HB-EGF) and transforming growth factor-α (TGF-α).7,24,25 keratinocyte proliferation and differentiation. Because FoxM1 is a Metalloproteinase-mediated cleavage of the transmembrane pre- major regulator of G2/M progression,36 which is widely over- cursors of these growth factors is thought to be required for major expressed in human cancer and implicated in cancer progression EGFR ligand functions including cell proliferation and migration.23 and metastasis,35 these findings have important mechanistic Different EGFR ligands mediate keratinocyte behavior in implications for the role of AREG in the pathogenesis and different cellular contexts.7 AREG participates in embryonic treatment of epithelial cancer. morphogenesis of mammary gland and bone.26,27 It is the predominant autocrine growth factor for cultured keratinocytes,7,9,28 and is markedly upregulated in hyperprolifera- RESULTS 17,29,30 tive skin conditions including psoriasis and wound healing. We subjected the inducible AREG knockdown keratinocyte cell line AREG is gaining increasing relevance in cancer research and N/TERT-TR-shAREG to autocrine growth assays as described7 and treatment, as it is overexpressed in a wide variety of tumors, is a determined cell counts, proliferation and cell cycle distribution by marker of poor prognosis and resistance to anti-EGFR therapies in flow cytometry (Figure 1a). Tetracycline (Tet)-mediated AREG 1Department of Dermatology, University of Michigan, Ann Arbor, MI, USA; 2Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; 3Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; 4Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain and 5Ann Arbor Veterans Affairs Health System, Ann Arbor, MI, USA. Correspondence: Dr SW Stoll, Department of Dermatology, University of Michigan, 7415 Medical Sciences Building I, 1301 East Catherine, Ann Arbor, MI 48109-5675, USA. E-mail: [email protected] Received 13 December 2014; revised 4 June 2015; accepted 13 June 2015; published online 3 August 2015 AREG regulates G2/M progression via FoxM1 SW Stoll et al 2076 Figure 1. AREG silencing profoundly alters keratinocyte morphology and cell cycle distribution in human keratinocytes. (a) Overview of the keratinocyte cell growth assay with and without 1 μg/ml Tet with and without 100 ng/ml rhAREG. (b) Parental N/TERT-TR-shAREG keratinocytes were subjected to growth assays and photographed at the end of the 6-day assay. Note that Tet-induced AREG silencing leads to the appearance of binucleated cells (arrows). (c) Quantification of cell numbers as assessed by flow cytometry-based cell counting using fluorescent reference beads. Data are expressed as cell numbers and represent 10% of the total cells per well. Data are mean ± s.e.m. (n = 4 with three biological replicates per experiment and condition). Significant pairwise contrasts (mean ratio; corrected P): control vs Tet (12.8; 0.0097), control vs Tet/AREG (12.2; 0.0051), AREG vs Tet (13.1; 0.011), AREG vs Tet/AREG (12.5; 0.0041). (d and e) CFSE-labeled keratinocytes were used in 6-day growth assays followed by DAPI labeling and analysis by flow cytometry. ‘Day 0’ denotes keratinocytes at the time of plating. Note that Tet-induced AREG silencing causes a marked decrease in cell division (~8-fold reduction relative to control keratinocytes, as assessed by CFSE dye dilution) (d) accompanied by a large increase in cells with ⩾ 4n DNA content (e) even in the presence of exogenous AREG. Oncogene (2016) 2075 – 2086 © 2016 Macmillan Publishers Limited AREG regulates G2/M progression via FoxM1 SW Stoll et al 2077 silencing led to the appearance of flattened, binucleated cells that were enriched for processes of immune response and regulation differed markedly in appearance from the ‘cobblestone’ mor- of cell communication (Supplementary Figure S3). Notably, the phology of these cells grown in the absence of Tet (Figure 1b). DEGs engendered by AREG silencing (up- or downregulated, Although addition of recombinant human (rh)AREG (or rhEGF or irrespective of normalization by EGF) overlapped significantly rhTGF-α, data not shown) had little or no effect in the absence of (Po0.001 by Wilcoxon's rank-sum test, see Materials and Tet (Figure 1b, upper panels), prominent cell enlargement was Methods) with genes whose expression is altered in response to observed in its presence (lower panels). As assessed by flow 6 h of Ca2+-mediated keratinocyte differentiation (Figure 2c) and cytometry-based cell counting (Figure 1c) and by carboxyfluor- in response to EGFR inhibitor treatment (Figure 2d). escein succinimidyl ester (CFSE) dye dilution (Figure 1d), AREG We confirmed the RNA-seq results for a subset of genes on the silencing resulted in a 12.5-fold decrease in cell counts and an same samples by quantitative real-time–polymerase chain reac- 8-fold reduction in proliferation, respectively, irrespective of the tion (QRT–PCR) using prevalidated TaqMan assays (Figure 3), addition of 100 ng/ml exogenous rhAREG. Relative to logarithmic- revealing excellent agreement with the RNA-seq results shown in phase N/TERT-TR-shAREG keratinocytes grown in complete Figure 2. These QRT–PCR data also confirm the lack of normal- medium (Figure 1e, upper panel), 6-day growth under autocrine ization for these genes by exogenous EGF. conditions led to a modest increase of cells with 44n DNA To determine the temporal relationship between AREG silen- content in the absence of Tet (middle panels). However, addition cing, downregulation of FOXM1 and its targets and the cellular of Tet caused a massive increase in cells with ⩾ 4n DNA content response, we performed time-course experiments in the presence (lower panels). Notably, neither the decreased proliferation nor the or absence
Recommended publications
  • Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
    Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development.
    [Show full text]
  • The Transcriptional Activator PAX3–FKHR
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The transcriptional activator PAX3–FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo Frédéric Relaix,1 Mariarosa Polimeni,2 Didier Rocancourt,1 Carola Ponzetto,3 Beat W. Schäfer,4 and Margaret Buckingham1,5 1CNRS URA 2375, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France; 2Department of Experimental Medicine, Section of Anatomy, University of Pavia, 27100 Pavia, Italy; 3Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, 10126 Turin, Italy; 4Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, CH-8032 Zurich, Switzerland Pax3 is a key transcription factor implicated in development and human disease. To dissect the role of Pax3 in myogenesis and establish whether it is a repressor or activator, we generated loss- and gain-of-function alleles by targeting an nLacZ reporter and a sequence encoding the oncogenic fusion protein PAX3–FKHR into the Pax3 locus. Rescue of the Pax3 mutant phenotypes by PAX3–FKHR suggests that Pax3 acts as a transcriptional activator during embryogenesis. This is confirmed by a Pax reporter mouse. However, mice expressing PAX3–FKHR display developmental defects, including ectopic delamination and inappropriate migration of muscle precursor cells. These events result from overexpression of c-met, leading to constitutive activation of Met signaling, despite the absence of the ligand SF/HGF. Haploinsufficiency of c-met rescues this phenotype, confirming the direct genetic link with Pax3. The gain-of-function phenotype is also characterized by overactivation of MyoD.
    [Show full text]
  • Genomic Targeting of Epigenetic Probes Using a Chemically Tailored Cas9 System
    Genomic targeting of epigenetic probes using a chemically tailored Cas9 system Glen P. Liszczaka, Zachary Z. Browna, Samuel H. Kima, Rob C. Oslunda, Yael Davida, and Tom W. Muira,1 aDepartment of Chemistry, Princeton University, Princeton, NJ 08544 Edited by James A. Wells, University of California, San Francisco, CA, and approved December 13, 2016 (received for review September 20, 2016) Recent advances in the field of programmable DNA-binding proteins Here, we report a method that combines the versatility of have led to the development of facile methods for genomic pharmacologic manipulation with the specificity of a genetically localization of genetically encodable entities. Despite the extensive programmable DNA-binding protein. Our strategy uses a utility of these tools, locus-specific delivery of synthetic molecules chemically tailored dCas9 to display a pharmacologic agent at a remains limited by a lack of adequate technologies. Here we combine genetic locus of interest in live mammalian cells (Fig. 1). This is trans the flexibility of chemical synthesis with the specificity of a pro- accomplished using split intein-mediated protein -splicing grammable DNA-binding protein by using protein trans-splicing to (PTS) to site-specifically link a recombinant dCas9:guide RNA ligate synthetic elements to a nuclease-deficient Cas9 (dCas9) (gRNA) complex to the synthetic cargo of choice (22). Indeed, in vitro and subsequently deliver the dCas9 cargo to live cells. we show that the remarkable specificity, efficiency, and speed of PTS allow the direct generation of desired dCas9 conjugates The versatility of this technology is demonstrated by delivering within the cell culture media, thereby facilitating a streamlined dCas9 fusions that include either the small-molecule bromodomain “one-pot” approach for genomic targeting of the reaction product.
    [Show full text]
  • Geometry, Epistasis, and Developmental Patterning
    Geometry, epistasis, and developmental patterning Francis Corson and Eric Dean Siggia1 Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Eric Dean Siggia, February 6, 2012 (sent for review November 28, 2011) Developmental signaling networks are composed of dozens of (5) shows that even differentiation can be reversed. Yet they have components whose interactions are very difficult to quantify in provided a useful guide to experiments. an embryo. Geometric reasoning enumerates a discrete hierarchy These concepts admit a natural geometric representation, of phenotypic models with a few composite variables whose para- which can be formalized in the language of dynamical systems, meters may be defined by in vivo data. Vulval development in also called the geometric theory of differential equations (Fig. 1). ’ the nematode Caenorhabditis elegans is a classic model for the in- When the molecular details are not accessible, a system s effec- tegration of two signaling pathways; induction by EGF and lateral tive behavior may be represented in terms of a small number of signaling through Notch. Existing data for the relative probabilities aggregate variables, and qualitatively different behaviors enum- of the three possible terminal cell types in diverse genetic back- erated according to the geometrical structure of trajectories or grounds as well as timed ablation of the inductive signal favor topology. The fates that are accessible to a cell are associated with attractors—the valleys in Waddington’s “epigenetic landscape” one geometric model and suffice to fit most of its parameters.
    [Show full text]
  • Genetic Dissection of Developmental Pathways*§ †
    Genetic dissection of developmental pathways*§ † Linda S. Huang , Department of Biology, University of Massachusetts-Boston, Boston, MA 02125 USA Paul W. Sternberg, Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125 USA Table of Contents 1. Introduction ............................................................................................................................1 2. Epistasis analysis ..................................................................................................................... 2 3. Epistasis analysis of switch regulation pathways ............................................................................ 3 3.1. Double mutant construction ............................................................................................. 3 3.2. Interpretation of epistasis ................................................................................................ 5 3.3. The importance of using null alleles .................................................................................. 6 3.4. Use of dominant mutations .............................................................................................. 7 3.5. Complex pathways ........................................................................................................ 7 3.6. Genetic redundancy ....................................................................................................... 9 3.7. Limits of epistasis ......................................................................................................
    [Show full text]
  • Cytokine Engineering for Improved Ligand/Receptor Traff Ming Dynamics Douglas a Lauffenburger, Eric M Fallon and Jason M Haugh
    Review R257 Scratching the (cell) surface: cytokine engineering for improved ligand/receptor traff Ming dynamics Douglas A Lauffenburger, Eric M Fallon and Jason M Haugh Cytokines can be engineered for greater potency in stimulating Cytokine engineering cellular functions. An obvious test criterion for an improved Recombinant DNA methods offer the possibility of pro- cytokine is receptor-binding affinity, but this does not always ducing cytokines possessing properties superior to those correlate with improved biological response. By combining of the natural. wild-type proteins. In aitrr, as well as in U&XI protein-engineering techniques with studies of receptor applications beckon. Mammalian cell binreactors, for trafficking and signaling, it might be possible to identify the example, for production of pharmacological proteins or ligand receptor-binding properties that should be sought. expansion of differentiated cell populations, often require feeding with specific cytokines for the ximulation of cell Address: Division of Bioengineering & Environmental Health, Department of Chemical Engineering and Center for Biomedical proliferation or differentiation. or the prevention of apop- Engineering, Massachusetts Institute of Technology, Cambridge tosis [1,2]. Typically, periodic re-feeding is required, as a MA 02139, USA. result of metabolic degradation of the cytokines arising from the action of a combination of extracellular and intra- Correspondence: Douglas A Lauffenburger E-mail: [email protected] cellular proteases [3]. Creation of cytokinc
    [Show full text]
  • In Vivo and in Vitro Analysis of Dll1 and Pax6 Function in the Adult Mouse Pancreas
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Experimentelle Genetik In vivo and in vitro analysis of Dll1 and Pax6 function in the adult mouse pancreas Davide Cavanna Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. D. Langosch Prüfer der Dissertation: 1. Univ.-Prof. Dr. M. Hrabé de Angelis 2. Univ.-Prof. A. Schnieke, Ph.D. Die Dissertation wurde am 03.07.2013 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 10.12.2013 angenommen. I. Table of contents I. TABLE OF CONTENTS .................................................................................................. I II. FIGURES AND TABLES ................................................................................................ V III. ABBREVIATIONS ................................................................................................. VIII IV. PUBLICATIONS, TALKS, AND POSTERS ................................................................... XI V. ACKNOWLEDGMENTS .............................................................................................. XII VI. AFFIRMATION ..................................................................................................... XIV 1. SUMMARY/ZUSAMMENFASSUNG ............................................................................
    [Show full text]
  • The Many Faces of Pleiotropy
    Opinion The many faces of pleiotropy Annalise B. Paaby and Matthew V. Rockman Department of Biology and Center for Genomics & Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA Pleiotropy is the well-established phenomenon of a pleiotropy is a feature of the genotype–phenotype map single gene affecting multiple traits. It has long played that defines the genetic and evolutionary autonomy of a central role in theoretical, experimental, and clinical aspects of phenotype, independent of fitness. This is the research in genetics, development, molecular biology, mutational pleiotropy underlying the diverse manifesta- evolution, and medicine. In recent years, genomic tech- tions of syndromic diseases, the ontogenetic pleiotropy that niques have brought data to bear on fundamental ques- underlies classical questions about allometry and hetero- tions about the nature and extent of pleiotropy. chrony, and the molecular pleiotropy that underlies ques- However, these efforts are plagued by conceptual diffi- tions about relative importance of cis-regulatory versus culties derived from disparate meanings and interpreta- protein-coding variants. tions of pleiotropy. Here, we describe distinct uses of the In ‘selectional pleiotropy’, the question is about the pleiotropy concept and explain the pitfalls associated number of separate components of fitness a mutation with applying empirical data to them. We conclude that, affects. In some cases, the multiple fitness components for any question about the nature or extent of pleiotropy, are life-history traits of a single individual, which is at the appropriate answer is always ‘What do you mean?’. the heart of the antagonistic pleiotropy model for the evolution of aging [1].
    [Show full text]
  • Measurement of Ligand-Receptor Interactions (Biomembrane Interactions/Adhesion/Biotin/Streptavidin) CHRISTIANE A
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 8169-8173, September 1991 Biochemistry Measurement of ligand-receptor interactions (biomembrane interactions/adhesion/biotin/streptavidin) CHRISTIANE A. HELM*t, WOLFGANG KNOLL*§, AND JACOB N. ISRAELACHVILI* *Department of Chemical and Nuclear Engineering, and Materials Department, University of California, Santa Barbara, CA 93106; and tMax-Planck-Institut for Polymerforschung, Postfach 3148, D-6500 Mainz, Federal Republic of Germany Communicated by Charles P. Bean, June 10, 1991 ABSTRACT One distinguishing feature of "life" is that deposition of a layer of L-a-dilauroylphosphatidylethanol- the physical forces between biological molecules and membrane amine (DLPE; Sigma) of area 0.55 nm2 per molecule (con- surfaces are often highly specific, in contrast to nonspecific taining 5% DPPE-biotin) (Molecular Probes), thereby expos- interactions such as van der Waals, hydrophobic, and electro- ing one biotin ligand group per 11 nm2. This deposition was static (Coulombic) forces. We have used the surface-forces- done at 30TC from a 1 mM NaCl solution at a pressure ofabout apparatus technique to study the specific "lock and key" or 38 mN/m. "ligand-receptor" interaction between two model biomem- An avidin surface was prepared from a biotin surface by brane surfaces in aqueous solution. The membranes were lipid adsorbing soluble streptavidin molecules (kindly provided by bilayers supported on mica surfaces; one carrying streptavidin Boehringer Mannheim) from an aqueous solution, thereby receptors, the other exposing biotin ligand groups. We found yielding a surface with the same density ofunsaturated avidin that, although no unusual or specific interaction occurs be- (receptor) sites as biotin (ligand) groups.
    [Show full text]
  • Hedgehog Signaling: Networking to Nurture a Promalignant Tumor Microenvironment
    Published OnlineFirst July 20, 2011; DOI: 10.1158/1541-7786.MCR-11-0175 Molecular Cancer Subject Review Research Hedgehog Signaling: Networking to Nurture a Promalignant Tumor Microenvironment Lillianne G. Harris, Rajeev S. Samant, and Lalita A. Shevde Abstract In addition to its role in embryonic development, the Hedgehog pathway has been shown to be an active participant in cancer development, progression, and metastasis. Although this pathway is activated by autocrine signaling by Hedgehog ligands, it can also initiate paracrine signaling with cells in the microenvironment. This creates a network of Hedgehog signaling that determines the malignant behavior of the tumor cells. As a result of paracrine signal transmission, the effects of Hedgehog signaling most profoundly influence the stromal cells that constitute the tumor microenvironment. The stromal cells in turn produce factors that nurture the tumor. Thus, such a resonating cross-talk can amplify Hedgehog signaling, resulting in molecular chatter that overall promotes tumor progression. Inhibitors of Hedgehog signaling have been the subject of intense research. Several of these inhibitors are currently being evaluated in clinical trials. Here, we review the role of the Hedgehog pathway in the signature characteristics of cancer cells that determine tumor development, progression, and metastasis. This review condenses the latest findings on the signaling pathways that are activated and/or regulated by molecules generated from Hedgehog signaling in cancer and cites promising clinical interventions. Finally, we discuss future directions for identifying the appropriate patients for therapy, developing reliable markers of efficacy of treatment, and combating resistance to Hedgehog pathway inhibitors. Mol Cancer Res; 9(9); 1165–74.
    [Show full text]
  • Inducible Short-Term and Stable Long-Term Cell Culture Systems Reveal That the PAX3-FKHR Fusion Oncoprotein Regulates CXCR4, PAX3, and PAX7 Expression
    Laboratory Investigation (2004) 84, 1060–1070 & 2004 USCAP, Inc All rights reserved 0023-6837/04 $30.00 www.laboratoryinvestigation.org Inducible short-term and stable long-term cell culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression Oana Tomescu1, Shujuan J Xia1, Donna Strezlecki1, Jeannette L Bennicelli1,*, Jill Ginsberg1,w, Bruce Pawel2 and Frederic G Barr1 1Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 2Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA In the pediatric cancer alveolar rhabdomyosarcoma (ARMS), the 2;13 chromosomal translocation juxtaposes the PAX3 and FKHR genes to generate a chimeric transcription factor. To explore molecular pathways altered by this oncoprotein, we generated an inducible form by fusing PAX3-FKHR to a modified estrogen receptor ligand-binding domain and expressed this construct in the RD embryonal rhabdomyosarcoma cell line. This inducible system permits short-term evaluation of downstream expression targets of PAX3-FKHR and complements a panel of stable long-term RD subclones constitutively expressing PAX3-FKHR. Using these two sets of resources, we investigated several candidate PAX3-FKHR target genes. First, we demonstrated in both short-term and long-term systems that PAX3-FKHR upregulates expression of the gene encoding the chemokine receptor CXCR4. In addition, we found that expression of wild-type PAX3 is upregulated, whereas expression of wild-type PAX7 is downregulated by PAX3-FKHR. In the presence of cycloheximide, CXCR4 and PAX3 are still inducible, supporting the hypothesis that these genes are direct transcriptional targets of PAX3- FKHR.
    [Show full text]
  • The Development and Evolutionary Origin of Barbels in the Channel
    THE DEVELOPMENT AND EVOLUTIONARY ORIGIN OF BARBELS IN THE CHANNEL CATFISH ICTALURUS PUNCTATUS (SILURIFORMES: ICTALURIDAE) by MICHAEL BRENT HAWKINS B.A., University of Colorado, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master’s of Arts Department of Ecology and Evolutionary Biology 2011 This thesis entitled: The development and evolutionary origin of barbels in the channel catfish Ictalurus punctatus (Siluriformes: Ictaluridae) written by Michael Brent Hawkins has been approved for the Department of Ecology and Evolutionary Biology David W. Stock, committee co-chair Alexander Cruz, committee co-chair Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. Hawkins, Michael Brent (M.A., Ecology and Evolutionary Biology) The development and evolutionary origin of barbels in the channel catfish Ictalurus punctatus (Siluriformes: Ictaluridae) Thesis co-directed by Professor Alexander Cruz and Associate Professor David Stock Understanding the origin of morphological novelties is an important goal of evolutionary developmental biology. In pursuit of this goal, we have examined the developmental genetic mechanisms that underlie growth and patterning in a largely overlooked group of morphological novelties: the barbels of fishes. Barbels are appendages that project from the head region in a large and disparate assortment of fish taxa, ranging from hagfishes to gobies. They often bear sensory organs and can be supported by a rod of connective tissue, muscle, cartilage, or bone.
    [Show full text]