biomolecules Article Highly Conserved C-Terminal Region of Indian Hedgehog N-Fragment Contributes to Its Auto-Processing and Multimer Formation Xiaoqing Wang 1,2 , Hao Liu 3 , Yanfang Liu 2, Gefei Han 2, Yushu Wang 2 , Haifeng Chen 3,*, Lin He 2,* and Gang Ma 1,2,* 1 Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
[email protected] 2 Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China;
[email protected] (Y.L.);
[email protected] (G.H.);
[email protected] (Y.W.) 3 State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
[email protected] * Correspondence:
[email protected] (H.C.);
[email protected] (L.H.);
[email protected] (G.M.) Abstract: Hedgehog (HH) is a highly conserved secretory signalling protein family mainly involved in embryonic development, homeostasis, and tumorigenesis. HH is generally synthesised as a precursor, which subsequently undergoes autoproteolytic cleavage to generate an amino-terminal fragment (HH-N), mediating signalling, and a carboxyl-terminal fragment (HH-C), catalysing the Citation: Wang, X.; Liu, H.; Liu, Y.; auto-processing reaction. The N-terminal region of HH-N is required for HH multimer formation Han, G.; Wang, Y.; Chen, H.; He, L.; to promote signal transduction, whilst the functions of the C-terminal region of HH-N remain Ma, G.