UTILIZATION of BAMBOO AS NON-TIMBER FOREST Products by KALAODI VILLAGERS in the INDONESIAN ISLAND of TIDORE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Species of Schizostachyum (Poaceae–Bambusoideae) from the Andaman Islands, India
BLUMEA 48: 187–192 Published on 7 April 2003 doi: 10.3767/000651903X686169 NEW SPECIES OF SCHIZOSTACHYUM (POACEAE–BAMBUSOIDEAE) FROM THE ANDAMAN ISLANDS, INDIA MUKTESH KUMAR & M. REMESH Botany Division, Kerala Forest Research Institute, Peechi 680-653, Trichur, Kerala, India SUMMARY Two new species of Schizostachyum Nees: S. andamanicum and S. kalpongianum, are described and illustrated. Key words: Schizostachyum, Andaman Islands, India. INTRODUCTION During the revisionary studies on Indian bamboos the authors could undertake a survey in the Andaman Islands. Five species of bamboos, namely Bambusa atra, Dinochloa an- damanica, Gigantochloa andamanica, Bambusa schizostachyoides, and Schizostachyum rogersii have so far been reported from the Andaman Islands (Munro, 1868; Gamble, 1896; Brandis, 1906; Parkinson, 1921). As a result of exploring different parts of the is lands two interesting bamboos were collected. Critical examination revealed that they belonged to the genus Schizostachyum Nees and hitherto undescribed. The genus Schizostachyum was described by Nees in 1829 based on Schizostachyum blumei. This genus is represented by about 45–50 species distributed in tropical and sub- tropical Asia from southern China throughout the Malaysian region, extending to the Pacific islands with the majority of species in Malaysia (Dransfield, 1983, 2000; Ohrnberger, 1999; Wong, 1995). The genus is characterised by sympodial rhizomes; erect or straggling thin-walled culms; many branches of the same length arising from the node; indeterminate inflores cence; absence of glumes in the spikelets; presence of lodicules; slender ovary with long, glabrous stiff style which is hollow around a central strand of tissue; anthers usu- ally with blunt apex. The bamboos collected from the Andaman Islands have straggling culms and are similar to Schizostachyum gracile (Munro) Holttum in certain characters but differ in several other characters. -
Tanglin P.O. Box 101 Singapore 9124 REPUBLIC of SINGAPORE
•' IDR.C BAMBOO/RATTAN NETWORK Tanglin P.O. Box 101 Singapore 9124 REPUBLIC OF SINGAPORE Newsletter No. 9 August, 1989 Dear Network Scientists/Project Leaders workshops and publication of proceed ings. Some of you have met him and his Greetings! wife, Dr. Usha, at the November 1988 Cochin Bamboo Workshop where both of I am very pleased to send you this them presented their work on Bamboo particular Newsletter as this contains Tissue Culture. He will operate from three important announcements. his base in Delhi and make frequent visits to the IDRC Singapore Office and The first one is the appointment of the your projects. I am sure you will all new Bamboo/Rattan Network Coordinator. join me in welcoming Dr. Rao to the I am pleased to advise that Dr. I. V. Network family. Ramanuja Rao, Research Scientist B, (Reader) from the Department of Botany, The Second announcement relates to the University of Delhi, Delhi 110007, attached article by Punya Poudyal on India, has agreed to take the mantle Rattan and Bamboo Resources and their from Dr Dhanarajan, who accepted a Utilization in the South Pacific. senior position with the Open Learning Given the present scarcity of bamboo/ Institute of Hongkong. Dr. Rao will rattan resources in the region, this work closely with Prof. A.N. Rao, an article will be of interest to all of Emeritus Professor who does not need us. Punya can be reached at the introduction to the Network, and myself following address if you wish to in coordinating the network activities. contact him for further information: Dr Rao is the recipient of the 'Young Mr. -
Poaceae: Bambusoideae) Lynn G
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of -
The Hawaiian Islands Case Study Robert F
FEATURE Origin of Horticulture in Southeast Asia and the Dispersal of Domesticated Plants to the Pacific Islands by Polynesian Voyagers: The Hawaiian Islands Case Study Robert F. Bevacqua1 Honolulu Botanical Gardens, 50 North Vineyard Boulevard, Honolulu, HI 96817 In the islands of Southeast Asia, following the valleys of the Euphrates, Tigris, and Nile tuber, and fruit crops, such as taro, yams, the Pleistocene or Ice ages, the ancestors of the rivers—and that the first horticultural crops banana, and breadfruit. Polynesians began voyages of exploration into were figs, dates, grapes, olives, lettuce, on- Chang (1976) speculates that the first hor- the Pacific Ocean (Fig. 1) that resulted in the ions, cucumbers, and melons (Halfacre and ticulturists were fishers and gatherers who settlement of the Hawaiian Islands in A.D. 300 Barden, 1979; Janick, 1979). The Greek, Ro- inhabited estuaries in tropical Southeast Asia. (Bellwood, 1987; Finney, 1979; Irwin, 1992; man, and European civilizations refined plant They lived sedentary lives and had mastered Jennings, 1979; Kirch, 1985). These skilled cultivation until it evolved into the discipline the use of canoes. The surrounding terrestrial mariners were also expert horticulturists, who we recognize as horticulture today (Halfacre environment contained a diverse flora that carried aboard their canoes many domesti- and Barden, 1979; Janick, 1979). enabled the fishers to become intimately fa- cated plants that would have a dramatic impact An opposing view associates the begin- miliar with a wide range of plant resources. on the natural environment of the Hawaiian ning of horticulture with early Chinese civili- The first plants to be domesticated were not Islands and other areas of the world. -
Download Bamboo Records (Public Information)
Status Date Accession Number Names::PlantName Names::CommonName Names::Synonym Names::Family No. Remaining Garden Area ###########2012.0256P Sirochloa parvifolia Poaceae 1 African Garden ###########1989.0217P Thamnocalamus tessellatus mountain BamBoo; "BergBamBoes" in South Africa Poaceae 1 African Garden ###########2000.0025P Aulonemia fulgor Poaceae BamBoo Garden ###########1983.0072P BamBusa Beecheyana Beechy BamBoo Sinocalamus Beechyana Poaceae 1 BamBoo Garden ###########2003.1070P BamBusa Burmanica Poaceae 1 BamBoo Garden ###########2013.0144P BamBusa chungii White BamBoo, Tropical Blue BamBoo Poaceae 1 BamBoo Garden ###########2007.0019P BamBusa chungii var. BarBelatta BarBie BamBoo Poaceae 1 BamBoo Garden ###########1981.0471P BamBusa dolichoclada 'Stripe' Poaceae 2 BamBoo Garden ###########2001.0163D BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########2012.0069P BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########1981.0079P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########1981.0084P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########2000.0297P BamBusa dolichomerithalla 'Silverstripe' Blowpipe BamBoo 'Silverstripe' Poaceae 1 BamBoo Garden ###########2013.0090P BamBusa emeiensis 'Flavidovirens' Poaceae 1 BamBoo Garden ###########2011.0124P BamBusa emeiensis 'Viridiflavus' Poaceae 1 BamBoo Garden ###########1997.0152P BamBusa eutuldoides Poaceae 1 BamBoo Garden ###########2003.0158P BamBusa eutuldoides -
Macro Propagation of Long Internode Schizostachyum Dulloa (Gamble) R
Int.J.Curr.Microbiol.App.Sci (2018) 7(2): 78-83 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 03 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.703.009 Macro Propagation of Long Internode Schizostachyum dulloa (Gamble) R. B. Majumdar through Culm Cutting J. Pathak*, M.B. Tandel, S.M. Patel, J.R. Chavda and D.H. Prajapati Department of Silviculture and Agroforestry, College of Forestry, Navsari Agricultural University, Navsari – 396 450, Gujarat, India *Corresponding author ABSTRACT The present investigation entitled “Macro Propagation of long internode Schizostachyumdulloa(Gamble) R.B. Majumdar” waslaid out at Bamboo Nursery, College of Forestry, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, K e yw or ds Navsari during March-2015 to June-2017.Three year old bamboo culms of S. dulloa, Macro Schizostachyumdulloa(Gamble) R.B. Majumdarwas selected for investigation. Three propagation, Plant noded bamboo culm cuttings were sterilized with the fungicideafter that administered with growth regulators, different concentration of Plant Growth Regulators (auxins). The results revealed the Long internode, highest percentage of cuttings sprouted (66.67%), percentage of cuttings rooted (63.58%), Auxins number of leaves per plant (29.17), number of roots (12.11), length of root (21.50cm), Article Info days taken for initiation for first sprouting (20.73 days), length of sprouts (70.37cm) and percentage of plants survived after transplanting (62.35%) were recorded in combination Accepted: of high concentration of NAA and low concentration of IBA i.e.treatment T - NAA-500 04 February 2018 5 ppm + IBA-200 ppm. -
Comparative Mechanical Properties of Selectied Bamboo Species
Leoncio Mariano C. Acma Int. Journal of Precious Engineering Research and Application www.ijpera.com ISSN : 2456-2734, Vol. 2, Issue 1, April 2017, pp.01-08 RESEARCH ARTICLE OPEN ACCESS Comparative Mechanical Properties of Selectied Bamboo Species Leoncio Mariano C. Acma Department of Civil Engineering, College of Engineering, Central Mindanao University, Musuan, Bukidnon, Philippines ABSTRACT This study aimed to evaluate some basic mechanical properties of selected bamboo species that are applicable to structural applications. Seven bamboo species planted inside the Central Mindanao University Campus were tested, namely: Dendrocalamus merrillanus, Elmer; Gigantochcloa atter, Hassk; Bambusa vulgaris Var. Schrad; Dendrocalamaus asper, Schultes. F; Dendrocalamus latiflorus, Rehm.; Bambusa vulgaris Schrad.; and, Bambusa blumeana, Schultes were subjected to four-point bending test, compression parallel to grain test and shear strength parallel to grain test. Data were taken from bottom, middle and top portion of the bamboos. Result showed that Dendrocalamaus asper, Schultes. has the stronger compressive strength at an average of 104.02 MPa, Dendrocalamus latiflorus, Rehm. has the stronger shearing strength at an average value of 12.65 MPa, while Dendrocalamus merrilanus, Elmer has the stronger flexural strength with and average value of 188.39 MPa. All six bamboo species tested is 2-6 times stronger than 80% stress graded Vitex parviflora Juss. (Molave) in compressive strength, 1.7-4.4 times stronger in shearing strength and 1.4 – 7.85 times stronger in flexural strength. Keywords: bamboo culms, four-point load set-up, compression parallel to grain, shear strength parallel to grain, bamboo internodes I. INTRODUCTION commonly named as “sweet bamboo”; Bambusa Bamboo is abundant natural resource and blumeana, Schultes commonly named “kawayan available everywhere. -
Comparative Phylogeography of Bamboo Bats of The
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0274 Autor(en)/Author(s): Tu Vuong Tan, Csorba Gabor, Ruedi Manuel, Furey Neil M., Son Nguyen Truong, Thong Vu Dinh, Bonillo Celine, Hassanin Alexandre Artikel/Article: Comparative phylogeography of bamboo bats of the genus Tylonycteris (Chiroptera, Vespertilionidae) in Southeast Asia 1-38 European Journal of Taxonomy 274: 1–38 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.274 www.europeanjournaloftaxonomy.eu 2017 · Tu V.T. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:DEFAD552-9C2E-497B-83CA-1E04E3353EA4 Comparative phylogeography of bamboo bats of the genus Tylonycteris (Chiroptera, Vespertilionidae) in Southeast Asia Vuong Tan TU 1, Gábor CSORBA 2, Manuel RUEDI 3, Neil M. FUREY 4, Nguyen Truong SON 5, Vu Dinh THONG 6, Céline BONILLO 7 & Alexandre HASSANIN 8,* 1,5,6 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam. 1,7,8 Muséum national d’Histoire naturelle, Service de Systématique Moléculaire, UMS 2700, CP 26, 43, Rue Cuvier, 75005 Paris, France. 1,8 Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Universités, UMR 7205 MNHN CNRS UPMC, Muséum national d'Histoire naturelle, CP 51, 55, Rue Buffon, 75005 Paris, France. 2 Department of Zoology, Hungarian Natural History Museum, Baross u. 13, 1088 Budapest, Hungary. 3 Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Route de Malagnou 1, BP 6434, 1211 Geneva 6, Switzerland. -
Lessargapore 42889 1980
is ARCHIV hop LESSARgapore 42889 1980 Organized by the lntesnaUonai Development Research Centre and the Internahonal Union of Forestry Research Organ iza lions The International Development Research Centre is a public corporation cre- ated by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East. © 1980 International Development Research Centre Postal Address: Box 8500, Ottawa, Canada K IG 3H9 Head Office: 60 Queen Street, Ottawa Lessard, G. Chouinard, A. IDRC, Ottawa CA International Union of Forestry Research Organizations, Vienna AT IDRC-l59e Bamboo researchinAsia: proceedings of a workshop heldin Singapore, 28-30 May 1980. Ottawa, Ont., IDRC, 1980. 228 p. : ill. /IDRC publication!, /bamboo/, /South Asia!, /South East Asia!, !forestry research! - !botany/, !classification!, morphology!, !ecology!, !physical properties/, !geographic distribution!, !cultivation techniques!, !construction materials,', !musical instruments!, !conference report!, lust of participants!. U DC: 634.0.287 ISBN: 0-88936-267-X Microfiche edition available The cover -
Mass Propagation of Dendrocalamus Asper by Branch Cutting
Journal of Tropical Forest Science 30(1): 82–88 (2018) Hossain MA et al. https://doi.org/10.26525/jtfs2018.30.1.8288 MASS PROPAGATION OF DENDROCALAMUS ASPER BY BRANCH CUTTING Hossain MA1, 2, Kumar SM1, Seca G1, Maheran AA3 & Nor-Aini AS1, 4, * 1Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 2Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong -4331, Bangladesh 3Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 4Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia *[email protected] Submitted March 2017; accepted July 2017 Dendrocalamus asper is a thick-walled bamboo species widely used for edible shoots, chop sticks, rural housing, structural and building construction, ornamental and ecotourism purposes in Malaysia. However, due to the declination of timber production, increasing human population and their ever increasing demand, natural bamboo stands will not be able to cope with the growing demand in the future. Supply of bamboo may be increased through large-scale commercial or industrial plantations to fulfil the gap between demand and supply. However, the main problem for commercial plantation of bamboo species in Malaysia is the inadequate supply of quality planting materials since most of the commercially important bamboo species do not produce or produce few seeds after long intervals. The current study was therefore, designed to investigate the mass propagation potential of D. asper through branch cutting using an easy, inexpensive and efficient method. Primary or secondary branches consisting of three to four nodes along with the swollen base were planted into plastic buckets filled with coarse sand in partial shade under nursery condition. -
Universidade De São Paulo Faculdade De Zootecnia E Engenharia De Alimentos
UNIVERSIDADE DE SÃO PAULO FACULDADE DE ZOOTECNIA E ENGENHARIA DE ALIMENTOS CHRISTIAN GAUSS Tratamento preservativo e modificação química do bambu para fins estruturais Preservative treatment and chemical modification of bamboo for structural purposes Pirassununga 2020 CHRISTIAN GAUSS Tratamento preservativo e modificação química do bambu para fins estruturais Preservative treatment and chemical modification of bamboo for structural purposes Versão Corrigida Tese apresentada à Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo, como parte dos requisitos para a obtenção do Título de Doutor em Engenharia e Ciência dos Materiais. Área de Concentração: Desenvolvimento, Caracterização, e Aplicação de Materiais voltados à Agroindústria. Orientador: Prof. Dr. Holmer Savastano Junior. Pirassununga 2020 ACKNOWLEDGEMENTS This work would not be conceived without the moral support and trust of my family. Special thanks to my mother, Fatima, my father, Rudolf, and my brother David, who always believed in my efforts to become the person who I am nowadays. Thanks for the financial support from FAPESP (Processes 2016/26022-9 and 2018/18571-8) and CAPES that provided me with all the necessary means for the development of this work. These resources were possible because of all the taxpayers from São Paulo state and Brazil. Thank you for giving me this responsibility. Special thanks to my advisor, Prof. Holmer Savastano Junior, for the guidance, support, and belief in my work even in moments of doubt and confusion. I really appreciate all the opportunities for learning and personal development available under his guidance. This thesis was made possible by his trust and advice during all my doctorate. -
Chemical Constituents and Biological Activities of Essential Oils from Four Species of Bamboo Genus Schizostachyum
Journal of Tropical Biology and Conservation 12: 127–136, 2015 ISSN 1823-3902 Research Article Chemical Constituents and Biological Activities of Essential Oils from Four Species of Bamboo Genus Schizostachyum Charles Santhanaraju Vairappan1*, Thilahgavani Nagappan1,2, Liow Ting Hui1, Julius Kulip3 1 Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia 2 School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. 3 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia *Corresponding author: [email protected] Abstract Volatile chemical constituents of four species of local bamboo (Schizostachyum blumei Nees., Schizostachyum brachycladum Nees., Schizostachyum lima (Blanco) Merrill and Schizostachyum pilosum S.Dransf.) were investigated. The oils were obtained from bamboo culm through steam distillation and profiled using Gas Chromatography-Mass Spectrometry (GCMS). A total of 59 volatile constituents were identified, and these contained oxygenated sesquiterpene, α-elemol (8.2~21.1 %), coumaran (6.7~32.3 %), guaiacol-4-vinyl (0.6~0.9 %), palmitic acid (1.5~25.6 %), pentacosane (0.1~0.2 %), phytol (1.0~12.6 %), phytol acetate (0.5~1.7 %) and trans-squalene (0.2~1.6 %) consistently in the specimens studied. Based on the observation, S. pilosum exhibited wider diameter of inhibition against Escherchia coli and Staphylococcus aureus compared to the other species of Schizostachyum essential oil. Keywords: Wild bamboo, Volatile fingerprints, Antibacterial Activity. Introduction The medicinal applications of bamboo in the traditional medicine system were first mentioned around 500 AD.