Macro Propagation of Long Internode Schizostachyum Dulloa (Gamble) R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Species of Schizostachyum (Poaceae–Bambusoideae) from the Andaman Islands, India
BLUMEA 48: 187–192 Published on 7 April 2003 doi: 10.3767/000651903X686169 NEW SPECIES OF SCHIZOSTACHYUM (POACEAE–BAMBUSOIDEAE) FROM THE ANDAMAN ISLANDS, INDIA MUKTESH KUMAR & M. REMESH Botany Division, Kerala Forest Research Institute, Peechi 680-653, Trichur, Kerala, India SUMMARY Two new species of Schizostachyum Nees: S. andamanicum and S. kalpongianum, are described and illustrated. Key words: Schizostachyum, Andaman Islands, India. INTRODUCTION During the revisionary studies on Indian bamboos the authors could undertake a survey in the Andaman Islands. Five species of bamboos, namely Bambusa atra, Dinochloa an- damanica, Gigantochloa andamanica, Bambusa schizostachyoides, and Schizostachyum rogersii have so far been reported from the Andaman Islands (Munro, 1868; Gamble, 1896; Brandis, 1906; Parkinson, 1921). As a result of exploring different parts of the is lands two interesting bamboos were collected. Critical examination revealed that they belonged to the genus Schizostachyum Nees and hitherto undescribed. The genus Schizostachyum was described by Nees in 1829 based on Schizostachyum blumei. This genus is represented by about 45–50 species distributed in tropical and sub- tropical Asia from southern China throughout the Malaysian region, extending to the Pacific islands with the majority of species in Malaysia (Dransfield, 1983, 2000; Ohrnberger, 1999; Wong, 1995). The genus is characterised by sympodial rhizomes; erect or straggling thin-walled culms; many branches of the same length arising from the node; indeterminate inflores cence; absence of glumes in the spikelets; presence of lodicules; slender ovary with long, glabrous stiff style which is hollow around a central strand of tissue; anthers usu- ally with blunt apex. The bamboos collected from the Andaman Islands have straggling culms and are similar to Schizostachyum gracile (Munro) Holttum in certain characters but differ in several other characters. -
Bamboo Nutritional Composition, Biomass Production, and Palatability to Giant Pandas: Disturbance and Temporal Effects
Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2013 Bamboo Nutritional Composition, Biomass Production, and Palatability to Giant Pandas: Disturbance and Temporal Effects Jennifer L. Parsons Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Parsons, Jennifer L., "Bamboo Nutritional Composition, Biomass Production, and Palatability to Giant Pandas: Disturbance and Temporal Effects" (2013). Theses and Dissertations. 848. https://scholarsjunction.msstate.edu/td/848 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template B: Created by James Nail 2011V2.02 Bamboo nutritional composition, biomass production, and palatability to giant pandas: disturbance and temporal effects By Jennifer L. Parsons A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Agricultural Sciences (Animal Nutrition) in the Department of Animal and Dairy Sciences Mississippi State, Mississippi August 2013 Copyright by Jennifer L. Parsons 2013 Bamboo nutritional composition, biomass production, and palatability to giant pandas: disturbance and temporal effects By Jennifer L. Parsons Approved: _________________________________ _________________________________ Brian J. Rude Brian S. Baldwin Professor and Graduate Coordinator Professor Animal and Dairy Sciences Plant and Soil Sciences (Major Professor) (Committee Member) _________________________________ _________________________________ Stephen Demarais Gary N. Ervin Professor Professor Wildlife, Fisheries, and Aquaculture Biological Sciences (Committee Member) (Committee Member) _________________________________ _________________________________ Francisco Vilella George M. -
Tanglin P.O. Box 101 Singapore 9124 REPUBLIC of SINGAPORE
•' IDR.C BAMBOO/RATTAN NETWORK Tanglin P.O. Box 101 Singapore 9124 REPUBLIC OF SINGAPORE Newsletter No. 9 August, 1989 Dear Network Scientists/Project Leaders workshops and publication of proceed ings. Some of you have met him and his Greetings! wife, Dr. Usha, at the November 1988 Cochin Bamboo Workshop where both of I am very pleased to send you this them presented their work on Bamboo particular Newsletter as this contains Tissue Culture. He will operate from three important announcements. his base in Delhi and make frequent visits to the IDRC Singapore Office and The first one is the appointment of the your projects. I am sure you will all new Bamboo/Rattan Network Coordinator. join me in welcoming Dr. Rao to the I am pleased to advise that Dr. I. V. Network family. Ramanuja Rao, Research Scientist B, (Reader) from the Department of Botany, The Second announcement relates to the University of Delhi, Delhi 110007, attached article by Punya Poudyal on India, has agreed to take the mantle Rattan and Bamboo Resources and their from Dr Dhanarajan, who accepted a Utilization in the South Pacific. senior position with the Open Learning Given the present scarcity of bamboo/ Institute of Hongkong. Dr. Rao will rattan resources in the region, this work closely with Prof. A.N. Rao, an article will be of interest to all of Emeritus Professor who does not need us. Punya can be reached at the introduction to the Network, and myself following address if you wish to in coordinating the network activities. contact him for further information: Dr Rao is the recipient of the 'Young Mr. -
Poaceae: Bambusoideae) Lynn G
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 26 2007 Phylogenetic Relationships Among the One- Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University, Ames Soejatmi Dransfield Royal Botanic Gardens, Kew, UK Jimmy Triplett Iowa State University, Ames J. Gabriel Sánchez-Ken Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Clark, Lynn G.; Dransfield, Soejatmi; Triplett, Jimmy; and Sánchez-Ken, J. Gabriel (2007) "Phylogenetic Relationships Among the One-Flowered, Determinate Genera of Bambuseae (Poaceae: Bambusoideae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/26 Aliso 23, pp. 315–332 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENETIC RELATIONSHIPS AMONG THE ONE-FLOWERED, DETERMINATE GENERA OF BAMBUSEAE (POACEAE: BAMBUSOIDEAE) LYNN G. CLARK,1,3 SOEJATMI DRANSFIELD,2 JIMMY TRIPLETT,1 AND J. GABRIEL SA´ NCHEZ-KEN1,4 1Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA; 2Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK 3Corresponding author ([email protected]) ABSTRACT Bambuseae (woody bamboos), one of two tribes recognized within Bambusoideae (true bamboos), comprise over 90% of the diversity of the subfamily, yet monophyly of -
The Hawaiian Islands Case Study Robert F
FEATURE Origin of Horticulture in Southeast Asia and the Dispersal of Domesticated Plants to the Pacific Islands by Polynesian Voyagers: The Hawaiian Islands Case Study Robert F. Bevacqua1 Honolulu Botanical Gardens, 50 North Vineyard Boulevard, Honolulu, HI 96817 In the islands of Southeast Asia, following the valleys of the Euphrates, Tigris, and Nile tuber, and fruit crops, such as taro, yams, the Pleistocene or Ice ages, the ancestors of the rivers—and that the first horticultural crops banana, and breadfruit. Polynesians began voyages of exploration into were figs, dates, grapes, olives, lettuce, on- Chang (1976) speculates that the first hor- the Pacific Ocean (Fig. 1) that resulted in the ions, cucumbers, and melons (Halfacre and ticulturists were fishers and gatherers who settlement of the Hawaiian Islands in A.D. 300 Barden, 1979; Janick, 1979). The Greek, Ro- inhabited estuaries in tropical Southeast Asia. (Bellwood, 1987; Finney, 1979; Irwin, 1992; man, and European civilizations refined plant They lived sedentary lives and had mastered Jennings, 1979; Kirch, 1985). These skilled cultivation until it evolved into the discipline the use of canoes. The surrounding terrestrial mariners were also expert horticulturists, who we recognize as horticulture today (Halfacre environment contained a diverse flora that carried aboard their canoes many domesti- and Barden, 1979; Janick, 1979). enabled the fishers to become intimately fa- cated plants that would have a dramatic impact An opposing view associates the begin- miliar with a wide range of plant resources. on the natural environment of the Hawaiian ning of horticulture with early Chinese civili- The first plants to be domesticated were not Islands and other areas of the world. -
Comparative Phylogeography of Bamboo Bats of The
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2017 Band/Volume: 0274 Autor(en)/Author(s): Tu Vuong Tan, Csorba Gabor, Ruedi Manuel, Furey Neil M., Son Nguyen Truong, Thong Vu Dinh, Bonillo Celine, Hassanin Alexandre Artikel/Article: Comparative phylogeography of bamboo bats of the genus Tylonycteris (Chiroptera, Vespertilionidae) in Southeast Asia 1-38 European Journal of Taxonomy 274: 1–38 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2017.274 www.europeanjournaloftaxonomy.eu 2017 · Tu V.T. et al. This work is licensed under a Creative Commons Attribution 3.0 License. DNA Library of Life, research article urn:lsid:zoobank.org:pub:DEFAD552-9C2E-497B-83CA-1E04E3353EA4 Comparative phylogeography of bamboo bats of the genus Tylonycteris (Chiroptera, Vespertilionidae) in Southeast Asia Vuong Tan TU 1, Gábor CSORBA 2, Manuel RUEDI 3, Neil M. FUREY 4, Nguyen Truong SON 5, Vu Dinh THONG 6, Céline BONILLO 7 & Alexandre HASSANIN 8,* 1,5,6 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam. 1,7,8 Muséum national d’Histoire naturelle, Service de Systématique Moléculaire, UMS 2700, CP 26, 43, Rue Cuvier, 75005 Paris, France. 1,8 Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Universités, UMR 7205 MNHN CNRS UPMC, Muséum national d'Histoire naturelle, CP 51, 55, Rue Buffon, 75005 Paris, France. 2 Department of Zoology, Hungarian Natural History Museum, Baross u. 13, 1088 Budapest, Hungary. 3 Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Route de Malagnou 1, BP 6434, 1211 Geneva 6, Switzerland. -
Chemical Constituents and Biological Activities of Essential Oils from Four Species of Bamboo Genus Schizostachyum
Journal of Tropical Biology and Conservation 12: 127–136, 2015 ISSN 1823-3902 Research Article Chemical Constituents and Biological Activities of Essential Oils from Four Species of Bamboo Genus Schizostachyum Charles Santhanaraju Vairappan1*, Thilahgavani Nagappan1,2, Liow Ting Hui1, Julius Kulip3 1 Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia 2 School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. 3 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia *Corresponding author: [email protected] Abstract Volatile chemical constituents of four species of local bamboo (Schizostachyum blumei Nees., Schizostachyum brachycladum Nees., Schizostachyum lima (Blanco) Merrill and Schizostachyum pilosum S.Dransf.) were investigated. The oils were obtained from bamboo culm through steam distillation and profiled using Gas Chromatography-Mass Spectrometry (GCMS). A total of 59 volatile constituents were identified, and these contained oxygenated sesquiterpene, α-elemol (8.2~21.1 %), coumaran (6.7~32.3 %), guaiacol-4-vinyl (0.6~0.9 %), palmitic acid (1.5~25.6 %), pentacosane (0.1~0.2 %), phytol (1.0~12.6 %), phytol acetate (0.5~1.7 %) and trans-squalene (0.2~1.6 %) consistently in the specimens studied. Based on the observation, S. pilosum exhibited wider diameter of inhibition against Escherchia coli and Staphylococcus aureus compared to the other species of Schizostachyum essential oil. Keywords: Wild bamboo, Volatile fingerprints, Antibacterial Activity. Introduction The medicinal applications of bamboo in the traditional medicine system were first mentioned around 500 AD. -
Physical and Mechanical Properties of the Bamboo Species Bambusa Blumeana
PEER-REVIEWED ARTICLE bioresources.com Determining Material Suitability for Low-Rise Housing in the Philippines: Physical and Mechanical Properties of the Bamboo Species Bambusa blumeana Corinna Salzer,a,* Holger Wallbaum,a Marina Alipon,b and Luis Felipe Lopez c The use of cellulosic materials in the construction of low-rise housing in tropical climates has great potential. Bambusa blumeana (B. blumeana, J.A. and J.H. Schultes), the most abundantly available bamboo species in the Philippines, is a promising alternative material for the construction of cost-efficient buildings. However, to comply with municipal rules and regulations for construction, a comprehensive understanding of the organic raw material is needed to permit its application as a load-bearing structural member. In this study, the physical and mechanical properties of B. blumeana bamboo from a typical growth region of the Philippines were tested according to ISO 22157-1 (2004) and ISO 22157-2 (2004). The characteristic strength values of B. blumeana were as follows: compressive and tensile strengths parallel to the grain of 20 and 95 MPa, respectively; shear strength of 5 MPa, bending strength of 34.6 MPa, and the mean and fifth percentile modulus of elasticity of 13100 and 8600 MPa, respectively. Based on these results, a recommendation for permissible stresses for structural design was made in line with ISO 22156 (2004). Keywords: Bambusa blumeana; Bamboo; Philippines; Physical and mechanical properties; Alternative construction materials; Housing Contact information: -
Hortax Presentation
HORTAX CULTIVATED PLANT TAXONOMY GROUP Muddles and misapplications: taxonomic difficulties associated with bamboos in cultivation Chris Stapleton bamboo-identification.co.uk formerly: University of Aberdeen Forestry Department Royal Botanic Garden Edinburgh Royal Botanic Gardens Kew Presentation roughly as given in 2015, updated a little in 2021. Here I illustrate the problem – multiple names in the UK for the same cultivated plant. Genus, species & cultivar names all varying on displayed and marketed plants. All these are the same species. To decide which name is correct Steve Renvoize & I had to go as far as conserving a species name in the journal Taxon. The genus Pleioblastus is considered appropriate on the grounds of morphology and molecular data. In that genus it is now correctly called Pleioblastus viridistriatus, but you will still see these other names around. Popping in to Tesco’s, I saw a nice little bamboo plant on the stands outside. It had an authoritative label, saying Fountain Bamboo. It is not Fountain Bamboo, which is Fargesia nitida. On the back it says Fargesia rufa, which it also is not. It is actually Fargesia dracocephala ‘Rufa’, Dragon-head Bamboo. It also says it comes from the mountains of western China, while in fact it comes from Central China, but that is not so important as getting the name so wrong. How have we got into this position in Europe? This disinformation would not happen in the US, where we have verified and standardised bamboo names for most of the horticulturally available bamboos. Stapleton, C. M. A. & Renvoize, S. A. (2001). Proposal to conserve the name Bambusa viridistriata Siebold ex André (Poaceae, Bambusoideae). -
Bamboos of the Batu Putu Biodiversity Park Lampung
BIOMA 16 (1), 2020 p-ISSN: 0126-3552 Biologi UNJ Press e-ISSN: 2580-9032 DOI: 10.21009/Bioma16(1).2 Research article BAMBOOS OF THE BATU PUTU BIODIVERSITY PARK LAMPUNG Yeni Rahayu1,a) and Dita Ervianti2) 1Department of Biology, Sumatra Institute of Technology, Jl. Terusan Ryacudu, Way Huwi, Jati Agung, South Lampung 35365 2Alumni of Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta (UNJ), Jl. Rawamangun Muka, Jakarta Timur 13220 a)Corresponding author: [email protected] ABSTRACT Sumatra has a high diversity of bamboo (around 80 species of bamboo, and an unfinished record) in Indonesia. Lampung is one of the regions in Sumatra that has a great number of bamboo species and the endemic bamboos that has not been studied. The Batu Putu Biodiversity Park is an area designed by the local government to become Bamboo Education Tourism Center. Within a few years, the Batu Putu Biodiversity Park ecosystem can be changed effects a tourism activity. The exploratory study has been done to discover the bamboo species that originally grew in the Batu Putu Biodiversity Park, Lampung - Sumatra. The data that has been obtained from this study is important as a part of bamboo diversity data in Lampung, and Sumatra generally. Besides, it gave information about bamboo species that suitable to grow on the rocky soils. The result showed four genera, consisting of five species, namely Dendrocalamus asper, Gigantochloa atroviolacea, G. hasskarliana, Schizostachyum zollingeri, and Dinochloa sp. The last species is a candidate for a new record of Sumatran climbing bamboos, even new species candidates that we can not decide yet due to lack of samples and some particular conditions. -
Bamboo Bamboo
BAMBOOBAMBOO TheThe AmazingAmazing GrassGrass AA GuideGuide toto THETHE DIVERSITYDIVERSITY ANDAND STUDYSTUDY OFOF BAMBOOSBAMBOOS ININ SOUTHEASTSOUTHEAST ASIAASIA KMKM WongWong BAMBOO The Amazing Grass BAMBOO The Amazing Grass A Guide to THE DIVERSITY AND STUDY OF BAMBOOS IN SOUTHEAST ASIA KM Wong Rimba Ilmu Botanic Garden, Institute of Biological Sciences, Faculty of Science, University of Malaya International Plant Genetic Resources Institute (IPGRI) and University of Malaya 2004 Text copyright © International Plant Genetic Resources Institute (IPGRI), Regional Office for Asia, the Pacific and Oceania P.O. Box 236, UPM Post Office, Serdang, 43400 Selangor Darul Ehsan, Malaysia and University of Malaya, 50603 Kuala Lumpur, Malaysia Photographs copyright © as credited. First published 2004 Layout by Cheng Jen Wai Printed and bound in Malaysia Front cover: Unfinished bamboo basket in a village in Nami, Kedah, Peninsular Malaysia, its maker pensive. Back cover: Clump division and rhizome offsets of Gigantochloa latifolia, near Alor Setar, Kedah, Peninsular Malaysia, being taken for establishment in the Bambusetum of the Rimba Ilmu Botanic Garden, University of Malaya, an IPGRI-supported project. IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) iv Contents Foreword ..................................................................................................... vii Preface ........................................................................................................ -
Threatened Ecosystems of Myanmar
Threatened ecosystems of Myanmar An IUCN Red List of Ecosystems Assessment Nicholas J. Murray, David A. Keith, Robert Tizard, Adam Duncan, Win Thuya Htut, Nyan Hlaing, Aung Htat Oo, Kyaw Zay Ya and Hedley Grantham 2020 | Version 1.0 Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. License This document is an open access publication licensed under a Creative Commons Attribution-Non- commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0). Authors: Nicholas J. Murray University of New South Wales and James Cook University, Australia David A. Keith University of New South Wales, Australia Robert Tizard Wildlife Conservation Society, Myanmar Adam Duncan Wildlife Conservation Society, Canada Nyan Hlaing Wildlife Conservation Society, Myanmar Win Thuya Htut Wildlife Conservation Society, Myanmar Aung Htat Oo Wildlife Conservation Society, Myanmar Kyaw Zay Ya Wildlife Conservation Society, Myanmar Hedley Grantham Wildlife Conservation Society, Australia Citation: Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. (2020) Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Wildlife Conservation Society. ISBN: 978-0-9903852-5-7 DOI 10.19121/2019.Report.37457 ISBN 978-0-9903852-5-7 Cover photos: © Nicholas J. Murray, Hedley Grantham, Robert Tizard Numerous experts from around the world participated in the development of the IUCN Red List of Ecosystems of Myanmar. The complete list of contributors is located in Appendix 1.