An Approach to Paleoclimatic Conditions for Devonian (Upper Lochkovian and Middle Givetian) Ironstone Formation, NW Anatolian Carbonate Platform

Total Page:16

File Type:pdf, Size:1020Kb

An Approach to Paleoclimatic Conditions for Devonian (Upper Lochkovian and Middle Givetian) Ironstone Formation, NW Anatolian Carbonate Platform Turkish Journal of Earth Sciences Turkish J Earth Sci (2015) 24: 21-38 http://journals.tubitak.gov.tr/earth/ © TÜBİTAK Research Article doi:10.3906/yer-1406-7 An approach to paleoclimatic conditions for Devonian (upper Lochkovian and middle Givetian) ironstone formation, NW Anatolian carbonate platform 1, 1 2 2 İsmail Ömer YILMAZ *, M. Cemal GÖNCÜOĞLU , Dilek Gülnur DEMİRAY , İbrahim GEDİK 1 Department of Geological Engineering, Middle East Technical University, Ankara, Turkey 2 General Directorate of Mineral Research and Exploration (MTA) of Turkey, Ankara, Turkey Received: 10.06.2014 Accepted: 10.11.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: Lower-middle Devonian iron-bearing successions were studied along 2 measured stratigraphic sections in the Çamdağ region of NW Anatolia. Ironstones in the upper part of the Fındıklı Formation in Kabalakdere are characterized by alternating red and green mudstones and sandstones at the bottom, followed by a series of dolomite, dolomitic limestone with oolitic ironstones, and chamositic mudstones at the top. Conodonts from these carbonates indicate the delta–pesavis zones of the late Lochkovian. The 12- to 45-m-thick Ferizli Formation unconformably overlies the Fındıklı Formation with a quartz-arenite succession at the bottom. The formation comprises alternating red, iron-rich limestones and dolomitic limestones, where iron-rich bioclastic grainstones are more dominant than iron-rich oolitic grainstones. The dolomitic limestones in this succession mark the ensensis and hemiansatus zones of the middle Givetian age. Mineralogically, the carbonates are dominated by goethitized and chamositized fossil fragments and chamositic oolites. In the oolitic facies, the oolites are made up of iron-bearing carbonates/iron, the bioclast of micritized/ironized brachiopods, and crinoids, whereas the matrix includes goethite, brown iron-silicates, chamosite, sideritic oolites, quartz clasts, and brachiopods. Partial iron precipitation within microborings or precipitation along the spine holes on echinoid grains is observed in the bioclastic grainstone/ biosparite facies. Iron peloids are also recognized in the grainstone facies. Iron precipitation could be explained as precipitation of transported and dissolved iron from a terrestrial environment under wet/subtropical climate conditions within oxidizing and increased pH conditions, or as dissolved iron transported by upwelling currents over the shelves and precipitated under an oxidizing environment. The cyclic occurrence of primary iron in a marine carbonate environment and its extensive distribution over large areas indicates that a controlling mechanism for iron-rich carbonates and mudstones could be related to the cooperation of climate, sea level, and oceanographic changes in the middle Givetian. During the late Lochkovian, the same or very similar controlling factors might have operated, where the alternation of red mudstones can be explained by lateral facies changes or changes in terrestrial/nutrient influx. Key words: Middle Givetian, upper Lochkovian, Çamdağ area, NW Turkey, sedimentology, ironstones, iron-rich limestones, paleoclimate 1. Introduction explained some possible origins of the red pigmentation Iron-rich limestones have been studied on a broad of hematite in the Pragian Slivenee Limestone, Czech geographic and temporal scale in the world (e.g., Dreesen, Republic, by ferric bacteria, where distinct bacteria types 1989; Young, 1989; Young and Taylor, 1989; Ferretti, 2005; can precipitate iron in mainly oxic environments with low Brett et al., 2012; Ferretti et al., 2012; McLaughlin et al., or high pH conditions and even in interfaces between 2012). However, their origin is still under discussion. Preat anoxic and oxic environments. Bulvain et al. (2001) stated et al. (2008) indicated a contribution of iron bacteria in that the precipitation of iron is mainly related to the Devonian carbonates in hemipelagic and outer shelf contribution of an endobiotic microbial community and environments in Morocco. Kearsley (1989) made a network of bacteria/fungi. Microbial precipitation of iron primary approach for a possible mode of occurrence of continued during mound development, where they were ooids in terms of mineralogy and tried to classify different bathed by water impoverished in oxygen. ooids into some classes and subclasses. Each mineralogical On the other hand, Sturesson et al. (2000) emphasized association may have a different origin and might even the formation of iron ooids as a rapid process and the have been modified by diagenesis. Mamet and Boulvain origin of ooids was mostly associated with the chemical (1990) reported the presence of iron-rich microborings precipitation of cryptocrystalline iron oxyhydroxides from the “Griottes” facies in Spain. Mamet et al. (1997) by seawater enriched with Fe, Al, and Si by volcanic * Correspondence: [email protected] 21 YILMAZ et al. / Turkish J Earth Sci processes. Van Houten and Hou (1990) and, more recently, alternations related to variations in atmospheric CO2 levels Ferretti et al. (2012 and references therein) analyzed and partially correlated to eustatic sea level and aragonite– the stratigraphic and paleogeographic distribution of calcite ocean phases must also be tested in terms of TSFs. Paleozoic oolitic ironstones. Ebbighausen et al. (2007) Therefore, local or global causes of ironstones can also be reported the presence of mixed neritic–pelagic facies of considered for interbasinal correlations. the volcaniclastic hematitic ironstones in the Rhennish In NW Turkey, Devonian iron ooids were recognized Massif, Germany, in the Givetian. Extensive ironstone for the first time by de Wijkerslooth and Kleinsorge (1959). formations formed during the lower and upper Devonian Kipman (1974) performed the first mineralogical work on were reported from Central Europe, Northwest Africa, the the oolitic iron formations in this area and evaluated the South Russian platform, and South China (e.g., see Ferretti, occurrence as a sedimentary iron ore deposit. More recent 2005 and references therein). In these occurrences, the work was carried out mainly in a regional geological context ironstone was mainly associated with carbonate-detrital (e.g., Derman, 1997; Gedik and Önalan, 2001; Göncüoğlu successions deposited most commonly in the detritic et al., 2004; Boncheva et al., 2009) without emphasizing nearshore environment and mainly associated with major these formations. In the Çamdağ area, these studies have cratonic flooding conditions. shown the presence of a tectonostratigraphic unit that It is also possible to see a collaboration of fungi and completely differs in its Silurian-Devonian interval from algae in the forming of the iron ooids. Ferretti (2005) the typical “Paleozoic of İstanbul” of Görür et al. (1997). studied the ooidal and laminated ironstones of the Silurian Despite the striking differences in the lithostratigraphy, age from the Carnic Alps of Austria and noted the presence the most critical divergence is the occurrence of iron of magnetite coatings formed by fossil fungi in the form of ooid formations alongside the regional Middle Devonian microstromatolite-like features. Bacterial contribution is unconformity (Boncheva et al., 2009; Bozkaya et al., 2012). also possible to see as chamositic coating layers. Therefore, In the Central and Eastern Taurides, no iron-rich it was stated that the collaboration of bacteria and fungi Devonian successions were reported (e.g., Wehrmann et contributed to the iron ooids in that part of the Silurian in al., 2010). This may indicate that iron-rich deposits mostly the Carnic Alps. belong to the İstanbul-Zonguldak Composite Terrane, Brett et al. (2012) stated the importance of time-specific which is considered as the eastern continuation of the aspects of facies (TSFs) and their importance in terms central European terranes during the middle Devonian of global events and basinal variations. They imply that (e.g., Dojen et al., 2005). TSFs can be confined to single basins or are widely global. Our detailed fieldwork (Göncüoğlu et al., 2008) on Recognition of these facies can play an important role in these iron ooid occurrences along 2 different sections understanding the global changes. Controlling factors for in the Kabalakdere (90 m) and Ferizli (13.45 m) areas TSFs can be stated as abrupt changes in redox conditions in Çamdağ, NW Anatolia (Figure 1), revealed 2 distinct and early diagenetic mineralization, sedimentary sequences of formations that also differ in depositional condensation, abrupt sea level change, altered climate features. From these, the relatively younger main body in and paleoceanography, biotic evolution, and extinction. Ferizli comprises 11 separate centimeter-thick bands of According to the explanations of Brett et al. (2012), iron- oolitic/dolomitic limestones and oolitic ironstones. Recent rich red- to reddish-colored limestones/ironstones can field studies (Göncüoğlu et al., 2008) in the northern also be seen as one of the subjects of the TSF. However, central Pontides in the Bartın, Eflani, and Karadere areas it was also stated that the relationship of large-scale facies (Figure 1) have shown the continuation of these formations changes and major cycles such as icehouse–greenhouse towards the east for more than 300 km. Figure 1. Location and geological map of the studied regions (modified from Sachanski et al., 2010). 22 YILMAZ et al. / Turkish J Earth Sci In this study, we provide preliminary
Recommended publications
  • 2018 YILI FAALİYET RAPORU.Pdf
    SAKARYA İL TARIM ve ORMAN MÜDÜRLÜĞÜ 2018 YILI FAALİYET ÖZETİ SAKARYA ARALIK-2018 1 SAKARYA İL TARIM VE ORMAN MÜDÜRLÜĞÜ İl ve İlçe Müdürlükleri Personel Durumu Sakarya İl Tarım ve Orman Müdürlüğü 1 İl Müdürü, 3 İl Müdür Yardımcısı, 8 Şube Müdürü, 16 İlçe Müdürü yönetiminde toplam 516 personelle hizmetlerini yürütmektedir. Su Ürünleri SAKARYA İL TARIM VE ORMAN Ziraat Vet.Sağ. Ziraat Mühendisi Gıda Mühendisi Müh.- Balıkçılık Veteriner Hekim Teknis/Tekn. Tekns/Tekn. MÜDÜRLÜĞÜ Tek.Müh. Norm 4/A 4/B Norm 4/A 4/B Norm 4/A Norm 4/A 4/B Norm 4/A Norm 4/A ARAZİ TOP. VE TARIM.ALT YAPI ŞB.MD. 14 9 1 - 0 0 - 0 - 0 0 3 2 - 0 ÇAYIR, MERA VE YEM BİT.ŞB. 3 0 - 0 0 - 0 - 0 0 0 - 0 BİTKİSEL ÜRETİM VE SAĞ.ŞB.MD. 26 13 2 - 0 0 - 0 - 0 0 5 3 - 0 HAYVAN SAĞLIĞI YETİŞ.ŞB.MD. 4 0 0 - 0 0 - 0 19 8 6 - 0 5 3 BALIKÇILIK VE SU ÜRÜNLERİ ŞB.MD. - 0 0 - 0 0 8 7 1 0 0 - 0 - 0 KOORDİNASYON VE TAR.VER.ŞB.MD. 5 6 0 - 0 0 - 0 - 0 0 5 2 - 0 KIRSAL KALKINMA VE ÖRGÜT.ŞB.MD. 16 6 0 - 0 0 - 0 2 1 0 4 2 - 0 GIDA VE YEM ŞB.MD. 13 1 1 31 5 5 - 0 19 7 2 - 0 - 0 İL MÜDÜRLÜĞÜ TOPLAMI 78 38 4 31 5 5 8 7 41 16 8 17 9 5 3 ADAPAZARI 16 8 3 6 5 1 1 0 19 11 1 6 2 4 2 AKYAZI 12 4 4 2 0 1 2 0 12 6 0 5 1 3 2 ARİFİYE 4 4 1 1 1 0 - 1 2 2 0 2 2 2 1 ERENLER 9 7 1 2 4 0 - 0 9 6 1 6 2 2 0 FERİZLİ 9 1 3 1 0 1 - 0 5 1 0 6 1 3 0 GEYVE 15 2 5 1 0 1 - 0 8 3 3 9 1 3 2 HENDEK 15 8 3 2 0 1 2 0 13 8 1 5 2 3 1 KARAPÜRÇEK 4 3 0 - 0 0 - 0 2 2 1 2 0 2 0 KARASU 19 4 3 2 1 1 3 2 9 5 2 7 1 3 2 KAYNARCA 12 6 3 - 0 0 1 1 11 5 2 7 0 3 2 KOCAALİ 18 3 4 1 0 0 1 0 4 2 1 5 1 2 2 PAMUKOVA 9 3 4 1 0 1 1 0 5 4 1 5 2 3 1 SAPANCA
    [Show full text]
  • The Truong Son, Loei-Phetchabun, and Kontum Terranes in Indochina: Provenance, Rifting, and Collisions
    REVIEW published: 28 May 2021 doi: 10.3389/feart.2021.603565 The Truong Son, Loei-Phetchabun, and Kontum Terranes in Indochina: Provenance, Rifting, and Collisions Clive Burrett 1, Mongkol Udchachon 1,2* and Hathaithip Thassanapak 2 1 Palaeontological Research and Education Centre, Mahasarakham University, Mahasarakham, Thailand, 2 Applied Palaeontology and Biostratigraphy Research Unit, Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand The three main regions of Indochina are defined as the Truong Son, Loei-Phetchabun, and Kontum terranes. The aim of this review is to integrate numerous petrological studies with sedimentary, palaeontological, and provenance studies in order to construct a preliminary tectonic model which shows the terranes docked in the earliest Carboniferous (Truong Son with Loei-Phetchabun) and in the Permian (Kontum). The Kontum Terrane is characterized by Proterozoic magmatism, mid-Ordovician to Early Devonian granites, and Permian charnockites. Major carbonate platforms developed in the Givetian to earliest Tournaisian on Truong Son and from the Visean to mid-Permian across Truong Edited by: Son and Loei-Phetchabun terranes. The Truong Son has Silurian granites and a Basilios Tsikouras, Late Ordovician to Silurian magmatic arc along its southern and western borders Universiti Brunei Darussalam, Brunei caused by subduction of oceanic lithosphere, the remnants of which are now partially Reviewed by: Antonio Pedrera, preserved in the Loei and Tamky sutures. A region to the east of the Loei Suture in Instituto Geológico y Minero de the Loei Foldbelt has a similar-age volcanic arc extending northwards into Laos and España (IGME), Spain Sergio Llana-Fúnez, is included in Truong Son.
    [Show full text]
  • Adapazari Ovasi Ve Aşaği Sakarya Platosu'nda
    T.C. SAKARYA ÜN ĐVERS ĐTES Đ SOSYAL B ĐLĐMLER ENST ĐTÜSÜ ADAPAZARI OVASI VE A ŞAĞI SAKARYA PLATOSU’NDA TARIMSAL DE ĞĐŞĐ M YÜKSEK L ĐSANS TEZ Đ Kevser ZORLU Enstitü Anabilim Dal ı : Co ğrafya Tez Dan ış man ı: Yrd. Doç. Dr. Ali Y ĐĞĐ T HAZ ĐRAN - 2010 BEYAN Bu tezin yaz ılmas ında bilimsel yaz ım kurallar ına uyuldu ğunu, ba şkalar ının eserlerinden yararlan ılmas ı durumunda bilimsel normlara uygun olarak at ıfta bulunuldu ğunu, kullan ılan verilerde herhangi bir tahrifat yap ılmad ığı nı, tezin herhangi bir k ısm ının bu üniversite veya ba şka bir üniversitedeki ba şka bir tez çal ış mas ı olarak sunulmad ığı nı beyan ederim. Kevser ZORLU 30 / 05 / 2009 ÖNSÖZ “Adapazar ı Ovas ı ve A şağı Sakarya Platosun’nda Tar ımsal De ğişim” ad ını ta şı yan bu çal ış man ın konusunu Sakarya ilinde yeti ştirilen tar ım ürünlerinde geçmi şten günümüze ya şanan de ğişim ve nedenleri olu şturmaktad ır. Çal ış man ın giri ş bölümünde ara ştırma alan ının yeri, s ınırlar ı ve özellikleri; çal ış mada kullan ılan materyal, metot ve çal ış ma alan ıyla ilgili literatür özeti yer almaktad ır. Birinci bölümde Sakarya ilinde tar ımı etkileyen do ğal ve sosyo-ekonomik faktörler; ikinci bölümde ara ştırma alan ının tar ımsal yap ısı, özellikleri ve tar ımsal üretimde ya şanan de ğişim, nedenleri ile incelenmi ştir. Lisansüstü çal ış mamda dan ış manl ığı mı üstlenip, bu tezin konusunun belirlenmesinden, tamamlanmas ına kadar geçen sürede bana yard ımlar ı ve eme ği için Say ın Hocam Yrd.
    [Show full text]
  • Evaluating the Frasnian-Famennian Mass Extinction: Comparing Brachiopod Faunas
    Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas PAUL COPPER Copper, P. 1998. Evaluating the Frasnian-Famennian mass extinction: Comparing bra- chiopod faunas.- Acta Palaeontologica Polonica 43,2,137-154. The Frasnian-Famennian (F-F) mass extinctions saw the global loss of all genera belonging to the tropically confined order Atrypida (and Pentamerida): though Famen- nian forms have been reported in the literafure, none can be confirmed. Losses were more severe during the Givetian (including the extinction of the suborder Davidsoniidina, and the reduction of the suborder Lissatrypidina to a single genus),but ońgination rates in the remaining suborder surviving into the Frasnian kept the group alive, though much reduced in biodiversity from the late Earb and Middle Devonian. In the terminal phases of the late Palmatolepis rhenana and P linguifurmis zones at the end of the Frasnian, during which the last few Atrypidae dechned, no new genera originated, and thus the Atrypida were extĘated. There is no evidence for an abrupt termination of all lineages at the F-F boundary, nor that the Atrypida were abundant at this time, since all groups were in decline and impoverished. Atypida were well established in dysaerobic, muddy substrate, reef lagoonal and off-reef deeper water settings in the late Givetian and Frasnian, alongside a range of brachiopod orders which sailed through the F-F boundary: tropical shelf anoxia or hypońa seems implausible as a cause for aĘpid extinction. Glacial-interglacial climate cycles recorded in South Ameńca for the Late Devonian, and their synchronous global cooling effect in low latitudes, as well as loss of the reef habitat and shelf area reduction, remain as the most likely combined scenarios for the mass extinction events.
    [Show full text]
  • Upper Devonian Depositional and Biotic Events in Western New York
    MIDDLE- UPPER DEVONIAN DEPOSITIONAL AND BIOTIC EVENTS IN WESTERN NEW YORK Gordon C. Baird, Dept. of Geosciences, SUNY-Fredonia, Fredonia, NY 14063; D. Jeffrey Over, Dept. of Geological Sciences, SUNY-Geneseo, Geneseo, NY 14454; William T. Kirch gasser, Dept. of Geology, SUNY-Potsdam, Potsdam, NY 13676; Carlton E. Brett, Dept. of Geology, Univ. of Cincinnati, 500 Geology/Physics Bldg., Cincinnati, OH 45221 INTRODUCTION The Middle and Late Devonian succession in the Buffalo area includes numerous dark gray and black shale units recording dysoxic to near anoxic marine substrate conditions near the northern margin of the subsiding Appalachian foreland basin. Contrary to common perception, this basin was often not stagnant; evidence of current activity and episodic oxygenation events are characteristic of many units. In fact, lag deposits of detrital pyrite roofed by black shale, erosional runnels, and cross stratified deposits of tractional styliolinid grainstone present a counter intuitive image of episodic, moderate to high energy events within the basin. We will discuss current-generated features observed at field stops in the context of proposed models for their genesis, and we will also examine several key Late Devonian bioevents recorded in the Upper Devonian stratigraphic succession. In particular, two stops will showcase strata associated with key Late Devonian extinction events including the Frasnian-Famennian global crisis. Key discoveries made in the preparation of this field trip publication, not recorded in earlier literature,
    [Show full text]
  • ZİRAİ İLAÇ BAYİLERİ 1 ADAPAZARI ÖZCAN TARIM 2 ADAPAZARI HUN TİCARET 3 ADAPAZARI Köseoğlu Süper Biofer 4 ADAPAZARI MOLÇOK TARIM 5 ADAPAZARI PANCAR EKİCİLERİ KOOP
    ZİRAİ İLAÇ BAYİLERİ 1 ADAPAZARI ÖZCAN TARIM 2 ADAPAZARI HUN TİCARET 3 ADAPAZARI Köseoğlu Süper Biofer 4 ADAPAZARI MOLÇOK TARIM 5 ADAPAZARI PANCAR EKİCİLERİ KOOP. 6 ADAPAZARI ÖZ BAHAR TARIM 7 ADAPAZARI 708 S. YAĞLI TOHUMLAR 8 ADAPAZARI SAKARYA TARIM MARKET 9 ADAPAZARI ZİRAAT ODASI-1 10 ADAPAZARI EYLÜL TARIM 11 ADAPAZARI ARYA Tarım 12 ADAPAZARI YALÇIN PAZARLAMA 13 ADAPAZARI PANCAR EKİCİLERİ KOOP. 14 ADAPAZARI SAKARYA TOHUM TAR.SAN. 15 ADAPAZARI May Ada Tarım(TOPTANCI) 16 ADAPAZARI Özcan Tarım 17 ADAPAZARI PANCAR EKİCİLERİ KOOP. 18 ADAPAZARI ÖNCÜ TOHUM 19 ADAPAZARI PİRİMOĞLU TARIM 20 ADAPAZARI BUDAKLAR T.K.K. 21 ADAPAZARI ADA TARIM 22 ADAPAZARI ÖZMEN TARIM 23 ADAPAZARI SALMANLI T.K.K. 24 ADAPAZARI KOÇ TARIM 25 ADAPAZARI ERN Tarım Ürünleri 26 ADAPAZARI Sakarya Rekor Tarım 27 AKYAZI S.S. APEK AKYAZI SATIŞ MAĞAZASI 28 AKYAZI SEÇKİN TARIM 29 AKYAZI S.S. APEK ÇATALKÖPRÜ SATIŞ MAĞAZASI 30 AKYAZI ARSLAN TARIM 31 AKYAZI SERA TARIM 32 AKYAZI 275 SAYILI AKYAZI TKK. 33 AKYAZI 2868 SAYILI OSMANBEY TKK. 34 AKYAZI 1680 SAYILI YENİORMANKÖY T.K.K 35 AKYAZI ENKA TARIM 36 ARİFİYE ÇETİN ELEKTRO PLASTİK A.Ş. 37 ARİFİYE 490 SAYILI ARİFİYE TKK. 38 ERENLER TEKNİK TARIM 39 ERENLER MODEL GÜBRE İLAÇ (TOPTANCI) 40 ERENLER S.S. APEK ERENLER SATIŞ MAĞAZASI 41 FERİZLİ ONUR TARIM 42 FERİZLİ 2720 SAYILI FERİZLİ TKK. 43 FERİZLİ 2842 SAYILI GÖLKENT TKK 44 FERİZLİ FERİZLİ ZİRAAT ODASI 45 FERİZLİ FERİZLİ TARIM OFİSİ 46 GEYVE YAVUZ TARIM 47 GEYVE 1097 SAYILI AKDOĞAN T.K.K. 48 GEYVE ÇİNİ TARIM 49 GEYVE GENÇLER TARIM 50 GEYVE S.S. APEK GEYVE SATIŞ MAĞAZASI 51 GEYVE 1090 SAYILI GEYVE T.K.K.
    [Show full text]
  • Sakarya Valiliği Çevre Ve Şehircilik Il Müdürlüğü
    T.C. SAKARYA VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ SAKARYA İLİ 2016 YILI ÇEVRE DURUM RAPORU HAZIRLAYAN: SAKARYA VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ SAKARYA-2017 i ÖNSÖZ Hızlı nüfus artıĢı neticesinde oluĢan çarpık kentleĢme, bu nüfusun ihtiyaçlarını karĢılayabilmek için yapılan plansız sanayileĢme ile kaynakların aĢırı ve kontrolsüz kullanımı sonucu oluĢan atık maddelerin miktarı ve çeĢidi artıĢ göstermiĢtir. Gerekli önlemler alınmadan kontrolsüz bir Ģekilde doğaya bırakılan atıkları doğanın kendi kendine bertaraf etmesi mümkün olmamakta ve sonucunda çevre kirliliği günümüzde artarak devam etmektedir. Bu durum hem canlıların sağlığını tehdit etmekte hem de ülkelerin maddi kaynaklarının ciddi bir miktarının çevre kirliliğinin giderilmesinde harcanmasına neden olmaktadır. Sağlıklı bir çevre ve yaĢam kalitesi yüksek bir toplum oluĢturmak, çevre sorunlarının çözülmesiyle mümkündür.Temiz çevreye sahip, atık yönetim sistemlerini kuran Ģehirler modern ve yaĢanılabilir Ģehirler olarak kabul edilmektedir. Çevre kirliliği konusunda alınması gereken teknik ve ekonomik önlemlerin yanında öncelikle toplumda çevre bilincinin oluĢturulması gerekmektedir. Ġnsanlarımızı küçük yaĢlardan baĢlayarak çevre konusunda eğitmek durumundayız. Unutulmamalıdır ki çevreyi kirletmemek, kirlendikten sonra temizlemekten çok daha kolay ve ekonomiktir. Gelecek nesillere yaĢanabilir temiz bir çevre bırakabilmek için duyarlı davranmak hepimize düĢen önemli bir insanlık görevidir. Hazırlanan Çevre Durum Raporunun; çevrenin korunmasında, hava, toprak, su ve gürültü
    [Show full text]
  • The Eifelian Givetian Boundary (Middle Devonian) at Tsakhir, Govi Altai Region, Southern Mongolia
    23rd Annual Keck Symposium: 2010 Houston, Texas THE EIFELIAN GIVETIAN BOUNDARY (MIDDLE DEVONIAN) AT TSAKHIR, GOVI ALTAI REGION, SOUTHERN MONGOLIA NICHOLAS SULLIVAN State University of New York at Geneseo Faculty Advisor: D. Jeffrey Over INTRODUCTION AND PURPOSE GEOLOGIC SETTING The Devonian System (418.1±3.0 – 365.7±2.7 Ma) Badarch et al. (2002) argued that Mongolia consists is subdivided into three epochs, Lower, Middle, and of numerous terranes that were accreted onto small Upper, which are further subdivided into seven stag- Precambrian cratonic blocks in the Hangay Region es. The Middle Devonian is subdivided into the Eif- during the Paleozoic and Mesozoic. The focus of elian (391.9±3.4 – 388.1±2.6 Ma) and the Givetian this investigation are strata in a region recognized (388.1±2.6 - 383.7±3.1 Ma; Kaufmann, 2006). The as part of one of these accretionary wedges, which stage boundary is defined by the first appearance is referred to as the Gobi Altai Terrane (Figure 1; Ba- of Polygnathus hemiansatus at the Eifelian-Givetian darch et al., 2002; Minjin and Soja, 2009a). Badarch Stage Global Stratotype Section and Point (GSSP), et al. (2002) characterized the Gobi Altai Terrane as which is a section at Jebel Mech Irdane in the Tifilalt a backarc basin, as evidenced by abundant volcano- of Morocco (Walliser et al. 1995). At some sections, clastic sedimentary rocks. The volcanics within the the appearance of the goniatite Maenioceras undu- Gobi Altai Terrane are believed to be derived from latum has been used as a proxy for the boundary a prehistoric island arc represented by the Mandalo- (Kutcher and Schmidt, 1958).
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • T.C. Sakarya Valiliği
    T.C. SAKARYA VALİLİĞİ MAYIS-2015 İÇİNDEKİLER GİRİŞ... ...................................................................................................................... …3 İL HAKKINDA SAYISAL BİLGİLER... ...................................................................... …5 SOSYAL DURUM... .................................................................................................. …9 1) NÜFUS ve YÖNETİM DURUMU ........................................................................... 9 2) EĞİTİM DURUMU. ....................................................................................... ……11 3) SAĞLIK ................................................................................................................ 18 4) KÜLTÜR ve TURİZM ........................................................................................... 22 5) GENÇLİK HİZMETLERİ ve SPOR ................................................................... … 29 6) MALİYE ............................................................................................................... 33 7) AİLE ve SOSYAL POLİTİKALAR ...................................................................... .. 35 8) SOSYAL YARDIMLAŞMA ve DAYANIŞMA VAKIFLARI ..................................... 38 9) SOSYAL GÜVENLİK ........................................................................................... 41 10) TAPU ve KADASTRO DURUMU ....................................................................... 42 EKONOMİ .................................................................................................................
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]