DNA Fragments Binding CTCF in Vitro and in Vivo Are Capable of Blocking

Total Page:16

File Type:pdf, Size:1020Kb

DNA Fragments Binding CTCF in Vitro and in Vivo Are Capable of Blocking Didych et al. BMC Research Notes 2012, 5:178 http://www.biomedcentral.com/1756-0500/5/178 RESEARCHARTICLE Open Access DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity Dmitry A Didych, Elena S Kotova, Segey B Akopov, Lev G Nikolaev* and Eugene D Sverdlov Abstract Background: Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. Results: Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. Conclusions: We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells. Background Two basic approaches have been proposed to identify Spatial, temporal and tissue specific gene expression in many potential genomic insulators in one experiment. mammals is largely determined by genomic cis-regulatory One approach is based on the ChIP-on-chip or ChIP-seq elements, such as promoters, enhancers, silencers, and techniques with antibodies to known insulator-binding insulators (for recent review, see [1,2]). A survey of about proteins, like CTCF or CP190 [8-10]. This approach can 1% of the human genome [3] indicated that the regulatory be used for the whole-genome analysis, but has a draw- elements were more abundant in the genome than the back that binding of a certain protein may be insufficient genes they control and are mostly distal to the genes that for insulator activity, which may result in many false posi- they regulate. tives. Another approach is based on a functional enhan- While the number and positions of enhancer elements cer-blocking test in stably transfected cells [11,12] but is in the whole human genome can be determined with applicable to only relatively short (several megabases) some certainty through P300 binding [4], the number and genomic sequences. positions of most insulator elements are not known [2], It is well known that most mammalian insulators (with and methods of their identification in mammals are sparse. some exceptions reported [13-15]) bind CTCF (for review, Moreover, the definition of insulator is somewhat ambigu- see [16,17]). However, it was shown that CTCF has many ous–this term designates elements with enhancer-blocking other genomic functions apart from insulator [17]. or chromatin-bordering functions (reviewed in [5]) which Earlier we developed a positive-negative selection are not interrelated at least in some cases [6,7]. In addi- method allowing identification of insulators based on tion, the term “insulator” is sometimes used to designate their ability to prevent promoter activation by enhancer the elements that bind the CTCF protein but have no pro- when located between them [11]. We constructed a ven enhancer-blocking or chromatin-bordering activity. pPNT/EmP plasmid [11,12] containing the neomycin- resistance gene under control of the mouse phosphogly- cerate kinase promoter (mPGK1) and the herpes simplex * Correspondence: [email protected] virus thymidine kinase (HSV-tk) gene under control of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy the CMV minimal promoter and CMV enhancer. HSV-tk of Sciences, 16/10 Miklukho-Maklaya, Moscow 117997, Russia © 2012 Nikolaev et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Didych et al. BMC Research Notes 2012, 5:178 Page 2 of 9 http://www.biomedcentral.com/1756-0500/5/178 catalyzes phosphorylation of ganciclovir to the monopho- was isolated by agarose gel electrophoresis. The sns-con- sphate [18,19] which is further converted into the tripho- taining fragment was inserted in both orientations into sphate by cellular enzymes and incorporated into pPNT/EmP cut with Sal I and treated with Klenow growing DNA chain causing termination of replication enzyme. and cell death [20,21]. A negative control pPNT/E-l-mP plasmid was prepared The pPNT/EmP plasmid efficiently expresses the HSV- by insertion of a lambda phage fragment PCR-amplified tk gene. However, after insertion into pPNT/EmP of a with Xho I site-containing primers ACTCGAGTCCGT- DNA fragment capable of blocking the interaction GAGGTGAATGTG and ACTCGAGTAGTCGGCT- between the CMV promoter and enhancer, the HSV-tk CAACGTGG into SalI-digested pPNT/EmP. expression in cells stably transfected with this plasmid The constructs obtained are shown in Figure 1. Prior gets significantly reduced and the cells become resistant to electroporation, the constructs were linearized with to ganciclovir. Eco47 III (Fermentas). Using this principle, we developed a technique and used To reveal possible silencer activity of CTCF-binding it for identification and mapping of 18 enhancer-blocking fragments, the Sal I recognition site of the pPNT/EmP DNA elements within the FXYD5-COX7A1 region of plasmid was inactivated by Sal I digestion and filling in human chromosome 19. This region contains more than the sticky ends with Klenow enzyme followed by self-liga- 40 characterized genes with different expression profiles, tion. The plasmid was then cut with PspE I (SibEnzyme), and the data obtained allowed us to make conclusions on and double-stranded adapter (a hybrid of GTCAC- the mutual arrangement of enhancer-blocking sequences CAATTGTCGACGGATCC and GTGACGGATCCGTC- and genes and their possible functional interactions GACAATTG) containing a Sal I site (underlined) was [11,12]. inserted 3’ to the HSV-tk gene. The resulting plasmid In this work, we studied the relationship between (pPNT/EmPS, Figure 1) was used for insertion into the CTCF binding and enhancer-blocking activity of 10 novel Sal I site of CTCF-binding fragments ## 3, 7 and 8. CTCF-binding genomic fragments identified earlier in Prior to electroporation, the constructs were linearized our laboratory [22]. Using a functional test described with Ssp I (Fermentas). above, we demonstrated that all fragments which bind CTCF both in vitro and in vivo were capable of blocking Cell culture and transfection activation of the CMV minimal promoter by the CMV CHO-K1 cells (CCL-61, Chinese hamster ovary cells) were enhancer in stably transfected CHO cells. grown under conditions recommended by ATCC. Electro- poration was performed using a Gene Pulser Xcell Methods (BioRad) system as described previously [11], the trans- Basic protocols fected cells were inoculated into 5 ml of growth medium Growth and transformation of E. coli cells, preparation and incubated for 48 hours. The medium was then of plasmid DNA, agarose gel electrophoresis, blot-hybri- replaced with fresh culture medium supplemented with dization and other standard manipulations were per- 500 ug/ml of G418 (Geneticin, Gibco-BRL), and the cells formed as described [23]. were cultured for 2 weeks in the presence of this antibio- tic. An aliquot of the cell suspension was taken for geno- Constructs mic DNA isolation, and residual cells were cultured for Ten in vitro CTCF-binding DNA fragments cloned pre- 2moreweeksafteradditionof4or10uMofGANC viously in pGEM-T (Promega) [22] were cut out with (Sigma). The G418 and GANC resistant cells were then Xho I and inserted in both orientations into pPNT/EmP collected, and genomic DNA isolated using a Wizard [11] using Sal I site located between the CMV enhancer Genomic DNA Purification Kit (Promega). and minimal promoter. A pPNT/mP plasmid containing the HSV-tk gene under PCR control of the CMV minimal promoter and conferring The first stage of nested PCR was performed using a 20 ng resistance to neomycin and ganciclovir on transfected cells genomic DNA template and primers matching the 5’ and [11] was used as one of positive controls. Another positive 3’ flanks of the insertion site (Sal I). Structures of the pri- control was a pPNT/E-sns-mP plasmid containing the sea mers are presented in Table 1. Primers P1L and P1R were urchin Paracentrotus lividus sns insulator between enhan- used for pPNT/EmP based constructs and primers P2L cer and promoter [24,25]. To prepare this construct, a pBS and P2R - for pPNT/EmPS based constructs. The first KS + plasmid, kindly provided by R. Melfi and G. Spinelli stage product was diluted 4-fold and 1 ul thereof was used (University of Palermo, Italy), was cut with HindIIIand as a template for the second stage, where each individual Sma I, treated with Klenow enzyme to fill in the sticky internal primer was used in combination with either P1L ends, and a ~300 bp fragment containing the sns insulator or P1R in order to determine both the presence and Didych et al. BMC Research Notes 2012, 5:178 Page 3 of 9 http://www.biomedcentral.com/1756-0500/5/178 Figure 1 Plasmid constructions used in this work.mPGK-1-mousephosphoglyceratekinaseIpromoter;NeoR-E. coli neomycin phosphotransferase gene; HSV-tk-herpes simplex virus thymidine kinase gene. Broken arrows indicate direction of transcription. For detailed description, see the text. orientation of the CTCF-binding fragments in the selected where C is the relative DNA content, E-efficiency of DNA (see Table 2).
Recommended publications
  • Screening and Identification of Hub Genes in Bladder Cancer by Bioinformatics Analysis and KIF11 Is a Potential Prognostic Biomarker
    ONCOLOGY LETTERS 21: 205, 2021 Screening and identification of hub genes in bladder cancer by bioinformatics analysis and KIF11 is a potential prognostic biomarker XIAO‑CONG MO1,2*, ZI‑TONG ZHANG1,3*, MENG‑JIA SONG1,2, ZI‑QI ZHOU1,2, JIAN‑XIONG ZENG1,2, YU‑FEI DU1,2, FENG‑ZE SUN1,2, JIE‑YING YANG1,2, JUN‑YI HE1,2, YUE HUANG1,2, JIAN‑CHUAN XIA1,2 and DE‑SHENG WENG1,2 1State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine; 2Department of Biotherapy, Sun Yat‑Sen University Cancer Center; 3Department of Radiation Oncology, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China Received July 31, 2020; Accepted December 18, 2020 DOI: 10.3892/ol.2021.12466 Abstract. Bladder cancer (BC) is the ninth most common immunohistochemistry and western blotting. In summary, lethal malignancy worldwide. Great efforts have been devoted KIF11 was significantly upregulated in BC and might act as to clarify the pathogenesis of BC, but the underlying molecular a potential prognostic biomarker. The present identification mechanisms remain unclear. To screen for the genes associated of DEGs and hub genes in BC may provide novel insight for with the progression and carcinogenesis of BC, three datasets investigating the molecular mechanisms of BC. were obtained from the Gene Expression Omnibus. A total of 37 tumor and 16 non‑cancerous samples were analyzed to Introduction identify differentially expressed genes (DEGs). Subsequently, 141 genes were identified, including 55 upregulated and Bladder cancer (BC) is the ninth most common malignancy 86 downregulated genes. The protein‑protein interaction worldwide with substantial morbidity and mortality.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
    Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones).
    [Show full text]
  • FXYD5: Na+/K+-Atpase Regulator in Health and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 30 March 2016 doi: 10.3389/fcell.2016.00026 FXYD5: Na+/K+-ATPase Regulator in Health and Disease Irina Lubarski Gotliv * Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel FXYD5 (Dysadherin, RIC) is a single span type I membrane protein that plays multiple roles in regulation of cellular functions. It is expressed in a variety of epithelial tissues and acts as an auxiliary subunit of the Na+/K+-ATPase. During the past decade, a correlation between enhanced expression of FXYD5 and tumor progression has been established for various tumor types. In this review, current knowledge on FXYD5 is discussed, including experimental data on the functional effects of FXYD5 on the Na+/K+-ATPase. FXYD5 modulates cellular junctions, influences chemokine production, and affects cell adhesion. The accumulated data may provide a basis for understanding the molecular mechanisms underlying FXYD5 mediated phenotypes. Keywords: FXYD5, dysadherin, Na+/K+-ATPase, polarity, cell adhesion, cell junctions, glycosylation Edited by: FXYD5 (Dysadherin, RIC) is a type I membrane protein, that belongs to FXYD family. In Olga Vagin, mammalian cells this family of proteins consists of seven members (FXYD1-7) that share the University of California, Los Angeles, conserved F-X-Y-D motif in the trans-membrane domain. All family members are known to USA interact with Na+/K+-ATPase and affect its kinetic properties in a tissue-specific manner (for Reviewed by: a review see Garty and Karlish, 2006). FXYD5 was identified as a cell surface molecule by a Ugo Cavallaro, monoclonal antibody that was developed to selectively recognize cancerous but not normal cells.
    [Show full text]
  • Clinical Significance of P‑Class Pumps in Cancer (Review)
    ONCOLOGY LETTERS 22: 658, 2021 Clinical significance of P‑class pumps in cancer (Review) SOPHIA C. THEMISTOCLEOUS1*, ANDREAS YIALLOURIS1*, CONSTANTINOS TSIOUTIS1, APOSTOLOS ZARAVINOS2,3, ELIZABETH O. JOHNSON1 and IOANNIS PATRIKIOS1 1Department of Medicine, School of Medicine; 2Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus; 3College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar Received January 25, 2021; Accepted Apri 12, 2021 DOI: 10.3892/ol.2021.12919 Abstract. P‑class pumps are specific ion transporters involved Contents in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all 1. Introduction eukaryotic cells. The present review aimed to evaluate the 2. Methodology role of P‑type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase 3. NKA (HKA) and Ca2+‑ATPase] in cancer cells across three fronts, 4. SERCA pump namely structure, function and genetic expression. It has 5. HKA been shown that administration of specific P‑class pumps 6. Clinical studies of P‑class pump modulators inhibitors can have different effects by: i) Altering pump func‑ 7. Concluding remarks and future perspectives tion; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, 1. Introduction the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarco‑ The movement of ions across a biological membrane is a endoplasmic reticulum calcium ATPase can be inhibited by crucial physiological process necessary for maintaining thapsigargin resulting in decreased prostate tumor volume, cellular homeostasis.
    [Show full text]
  • Microarray and Pattern Miner Analysis of AXL and VIM Gene Networks in MDA‑MB‑231 Cells
    MOLECULAR MEDICINE REPORTS 18: 4147-4155, 2018 Microarray and pattern miner analysis of AXL and VIM gene networks in MDA‑MB‑231 cells SUDHAKAR NATARAJAN1, VENIL N SUMANTRAN2, MOHAN RANGANATHAN1 and SURESH MADHESWARAN1 1Department of Biotechnology, Faculty of Engineering and Technology; 2Dr. A.P.J. Abdul Kalam Centre for Excellence in Innovation and Entrepreneurship, Dr. M.G.R. Educational and Research Institute, Tamil Nadu, Chennai 600095, India Received March 20, 2018; Accepted August 2, 2018 DOI: 10.3892/mmr.2018.9404 Abstract. MDA-MB-231 cells represent malignant triple-nega- migration, metastasis and chemoresistance, whereas the VIM tive breast cancer, which overexpress epidermal growth factor gene network regulates novel tumorigenic processes, such as receptor (EGFR) and two genes (AXL and VIM) associated lipogenesis, senescence and autophagy. Notably, these two with poor prognosis. The present study aimed to identify novel networks contain 12 genes not reported for TNBC. therapeutic targets and elucidate the functional networks for the AXL and VIM genes in MDA-MB-231 cells. We identi- Introduction fied 71 genes upregulated in MDA-MB-231 vs. MCF7 cells using BRB-Array tool to re-analyse microarray data from six Triple negative breast cancers (TNBC) lack expression of three GEO datasets. Gene ontology and STRING analysis showed important receptors (ER, PR, and HER2). These cancers account that 43/71 genes upregulated in MDA-MB-231 compared with for 10-15% of breast cancers, and are characterized by overex- MCF7 cells, regulate cell survival and migration. Another pression of epidermal growth factor receptor (EGFR), high 19 novel genes regulate migration, metastases, senescence, proliferative rate, and mutations in the p53 and BRCA1 tumour autophagy and chemoresistance.
    [Show full text]
  • FXYD2 Monoclonal Antibody (M01), Human Gene Nomenclature for the Family Is Clone 1C3-B3 FXYD-Domain Containing Ion Transport Regulator
    FXYD2 monoclonal antibody (M01), human gene nomenclature for the family is clone 1C3-B3 FXYD-domain containing ion transport regulator. Mouse FXYD5 has been termed RIC (Related to Ion Channel). Catalog Number: H00000486-M01 FXYD2, also known as the gamma subunit of the Na,K-ATPase, regulates the properties of that enzyme. Regulatory Status: For research use only (RUO) FXYD1 (phospholemman), FXYD2 (gamma), FXYD3 (MAT-8), FXYD4 (CHIF), and FXYD5 (RIC) have been Product Description: Mouse monoclonal antibody shown to induce channel activity in experimental raised against a full length recombinant FXYD2. expression systems. Transmembrane topology has been established for two family members (FXYD1 and Clone Name: 1C3-B3 FXYD2), with the N-terminus extracellular and the C-terminus on the cytoplasmic side of the membrane. Immunogen: FXYD2 (AAH05302.1, 1 a.a. ~ 64 a.a) The Type III integral membrane protein encoded by this full-length recombinant protein with GST tag. MW of the gene is the gamma subunit of the Na,K-ATPase present GST tag alone is 26 KDa. on the plasma membrane. Although the Na,K-ATPase does not depend on the gamma subunit to be functional, Sequence: it is thought that the gamma subunit modulates the MDRWYLGGSPKGDVDPFYYDYETVRNGGLIFAGLAFI enzyme's activity by inducing ion channel activity. VGLLILLSRRFRCGGNKKRRQINEDEP Mutations in this gene have been associated with renal Host: Mouse hypomagnesaemia. Alternatively spliced transcript variants encoding different isoforms have been found for Reactivity: Human this gene. [provided by RefSeq] Applications: ELISA, IHC-P, S-ELISA, WB-Ce, WB-Re References: (See our web site product page for detailed applications 1.
    [Show full text]
  • Role of Cytochrome C Oxidase Nuclear-Encoded Subunits in Health and Disease
    Physiol. Res. 69: 947-965, 2020 https://doi.org/10.33549/physiolres.934446 REVIEW Role of Cytochrome c Oxidase Nuclear-Encoded Subunits in Health and Disease Kristýna ČUNÁTOVÁ1, David PAJUELO REGUERA1, Josef HOUŠTĚK1, Tomáš MRÁČEK1, Petr PECINA1 1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic Received February 2, 2020 Accepted September 13, 2020 Epub Ahead of Print November 2, 2020 Summary [email protected] and Tomáš Mráček, Department of Cytochrome c oxidase (COX), the terminal enzyme of Bioenergetics, Institute of Physiology CAS, Vídeňská 1083, 142 mitochondrial electron transport chain, couples electron transport 20 Prague 4, Czech Republic. E-mail: [email protected] to oxygen with generation of proton gradient indispensable for the production of vast majority of ATP molecules in mammalian Cytochrome c oxidase cells. The review summarizes current knowledge of COX structure and function of nuclear-encoded COX subunits, which may Energy demands of mammalian cells are mainly modulate enzyme activity according to various conditions. covered by ATP synthesis carried out by oxidative Moreover, some nuclear-encoded subunits possess tissue-specific phosphorylation apparatus (OXPHOS) located in the and development-specific isoforms, possibly enabling fine-tuning central bioenergetic organelle, mitochondria. OXPHOS is of COX function in individual tissues. The importance of nuclear- composed of five multi-subunit complexes embedded in encoded subunits is emphasized by recently discovered the inner mitochondrial membrane (IMM). Electron pathogenic mutations in patients with severe mitopathies. In transport from reduced substrates of complexes I and II to addition, proteins substoichiometrically associated with COX were cytochrome c oxidase (COX, complex IV, CIV) is found to contribute to COX activity regulation and stabilization of achieved by increasing redox potential of individual the respiratory supercomplexes.
    [Show full text]
  • Anti-FXYD5 (Aa 164-178) Polyclonal Antibody (CABT-BL1575) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-FXYD5 (aa 164-178) polyclonal antibody (CABT-BL1575) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Immunogen Synthetic peptide: GKCRQLSRLCRNHCR, corresponding to C terminal amino acids 164-178 of Human Dysadherin. Isotype IgG Source/Host Goat Species Reactivity Human Purification IgG fraction Conjugate Unconjugated Applications WB Cellular Localization Cell Membrane; Single-pass type I membrane protein Format Liquid Buffer 0.5% BSA, Tris buffered saline, pH 7.3 Preservative 0.02% Sodium Azide Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw cycles. BACKGROUND Introduction This gene encodes a member of a family of small membrane proteins that share a 35-amino acid signature sequence domain, beginning with the sequence PFXYD and containing 7 invariant and 6 highly conserved amino acids. The approved human gene nomenclature for the family is FXYD-domain containing ion transport regulator. Mouse FXYD5 has been termed RIC (Related to Ion Channel). FXYD2, also known as the gamma subunit of the Na,K-ATPase, regulates the properties of that enzyme. FXYD1 (phospholemman), FXYD2 (gamma), FXYD3 (MAT-8), FXYD4 (CHIF), and FXYD5 (RIC) have been shown to induce channel activity in experimental 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved expression systems. Transmembrane topology has been established for two family members (FXYD1 and FXYD2), with the N-terminus extracellular and the C-terminus on the cytoplasmic side of the membrane.
    [Show full text]
  • Human Primitive Brain Displays Negative Mitochondrial-Nuclear Expression Correlation of Respiratory Genes
    Downloaded from genome.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Research Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes Gilad Barshad, Amit Blumberg, Tal Cohen, and Dan Mishmar Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq exper- iments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes’ co-expression across human tissues. Nevertheless, negative mtDNA- nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain re- gions, collectively termed the “primitive” brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neu- rons and nonneuronal cells) and by their spatial brain location. As the “primitive” brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found “primitive” brain-specific up-regula- tion of lactate dehydrogenase B (LDHB), which associates with high OXPHOS activity, at the expense of LDHA, which pro- motes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena.
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]