Ep 0389084 B1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Portable HAZMAT Sensors for First Responders
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. -
Ep 2508506 A1
(19) & (11) EP 2 508 506 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 10.10.2012 Bulletin 2012/41 C07C 67/343 (2006.01) C07C 227/08 (2006.01) C07F 5/02 (2006.01) C07C 229/34 (2006.01) (21) Application number: 11161611.6 (22) Date of filing: 08.04.2011 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AL AT BE BG CH CY CZ DE DK EE ES FI FR GB yet been filed GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Kunic Tesovic, Barbara Designated Extension States: Lek Pharmaceuticals d.d. BA ME Sandoz Development Center Slovenia - Patents Verovskova 57 (71) Applicant: LEK Pharmaceuticals d.d. 1526 Ljubljana (SI) 1526 Ljubljana (SI) (54) Preparation of sitagliptin intermediates (57) The invention relates to the preparation of chiral compounds, in particular to the preparation of chiral compounds which may be used as intermediates for the preparation of anti-diabetic agents, preferably sitagliptin. EP 2 508 506 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 508 506 A1 Description Field of the Intention 5 [0001] The present invention relates to the preparation of chiral compounds, in particular to the preparation of chiral compounds which may be used as intermediates for the preparation of anti-diabetic agents, preferably sitagliptin. Background prior art 10 [0002] Type II diabetes mellitus (T2DM) is a global epidemic. Therefore, the research is oriented in the development of selective inhibitors of the enzyme DPP-IV as a promising new treatment for the type II diabetes. -
Inorganic Syntheses
INORGANIC SYNTHESES Volume 27 .................... ................ Board of Directors JOHN P. FACKLER, JR. Texas A&M University BODlE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State Uniuersity JAY H. WORRELL University of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State University Future Volumes 28 ROBERT J. ANGELIC1 Iowa State University 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute 31 ALLEN H. COWLEY University of Texas, Austin 32 MARCETTA Y. DARENSBOURG Texas A&M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University. Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology. London AKlO YAMAMOTO Tokyo Institute 01 Technology. Yokohama Editor-in-Chief ALVIN P. GINSBERG INORGANIC SYNTHESES Volume 27 A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore A NOTE TO THE READER This book has been electronically reproduced from digital idormation stored at John Wiley h Sons, Inc. We are phased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings. Published by John Wiley & Sons, Inc. Copyright $? 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. -
Pyrophoric Materials
Appendix A PYROPHORIC MATERIALS Pyrophoric materials react with air, or with moisture in air. Typical reactions which occur are oxidation and hydrolysis, and the heat generated by the reactions may ignite the chemical. In some cases, these reactions liberate flammable gases which makes ignition a certainty and explosion a real possibility. Examples of pyrophoric materials are shown below. (List may not be complete) (a) Pyrophoric alkyl metals and derivatives Groups Dodecacarbonyltetracobalt Silver sulphide Dialkytzincs Dodecacarbonyltriiron Sodium disulphide Diplumbanes Hexacarbonylchromium Sodium polysulphide Trialkylaluminiums Hexacarbonylmolybdenum Sodium sulphide Trialkylbismuths Hexacarbonyltungsten Tin (II) sulphide Nonacarbonyldiiron Tin (IV) sulphide Compounds Octacarbonyldicobalt Titanium (IV) sulphide Bis-dimethylstibinyl oxide Pentacarbonyliron Uranium (IV) sulphide Bis(dimethylthallium) acetylide Tetracarbonylnickel Butyllithium (e) Pyrophoric alkyl non-metals Diethylberyllium (c) Pyrophoric metals (finely divided state) Bis-(dibutylborino) acetylene Bis-dimethylarsinyl oxide Diethylcadmium Caesium Rubidium Bis-dimethylarsinyl sulphide Diethylmagnesium Calcium Sodium Bis-trimethylsilyl oxide Diethylzinc Cerium Tantalum Dibutyl-3-methyl-3-buten-1-Yniborane Diisopropylberyllium Chromium Thorium Diethoxydimethylsilane Dimethylberyllium Cobalt Titanium Diethylmethylphosphine Dimethylbismuth chloride Hafnium Uranium Ethyldimthylphosphine Dimethylcadmium Iridium Zirconium Tetraethyldiarsine Dimethylmagnesium Iron Tetramethyldiarsine -
Safety Data Sheet
SAFETY DATA SHEET 1. Identification Product identifier Boron Bromide (BBr3) Other means of identification SDS number 1EC Materion Code 1EC CAS number 10294-33-4 Synonyms BORON BROMIDE Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name Materion Advanced Chemicals Inc. Address 407 N 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Telephone 414.212.0257 E-mail [email protected] Contact person Noreen Atkinson Emergency phone number Chemtrec 800.424.9300 2. Hazard(s) identification Physical hazards Not classified. Health hazards Acute toxicity, oral Category 2 Acute toxicity, inhalation Category 1 Skin corrosion/irritation Category 1A Serious eye damage/eye irritation Category 1 Environmental hazards Not classified. OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Fatal if swallowed. Causes severe skin burns and eye damage. Causes serious eye damage. Fatal if inhaled. Precautionary statement Prevention Do not breathe vapor. Wash thoroughly after handling. Do not eat, drink or smoke when using this product. Use only outdoors or in a well-ventilated area. Wear protective gloves/protective clothing/eye protection/face protection. Wear respiratory protection. Response If swallowed: Immediately call a poison center/doctor. If swallowed: Rinse mouth. Do NOT induce vomiting. If on skin (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. If inhaled: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a poison center/doctor. Specific treatment is urgent (see this label). -
Guidelines for Pyrophoric Materials
Guidelines for Pyrophoric Materials Definition and Hazards Pyrophoric materials are substances that ignite instantly upon exposure to air, moisture in the air, oxygen or water. Other common hazards include corrosivity, teratogenicity, and organic peroxide formation, along with damage to the liver, kidneys, and central nervous system. Examples include metal hydrides, finely divided metal powders, nonmetal hydride and alkyl compounds, white phosphorus, alloys of reactive materials and organometallic compounds, including alkylithiums. Additional pyrophoric materials are listed in Appendix A. Failure to follow proper handling techniques could result in serious injury or death. Controlling the Hazards . If possible, use safer chemical alternatives. A “dry run” of the experiment should be performed using low-hazard materials, such as water or solvent, as appropriate. Limit the amount purchased and the amount stored. Do not accumulate unneeded pyrophoric materials. BEFORE working with pyrophoric materials, read the MSDS sheets. The MSDS must be reviewed before using an unfamiliar chemical and periodically as a reminder. A Standard Operating Procedure (SOP) should be prepared and reviewed for each process involving pyrophoric materials. In lab training should be completed and documented. If possible, use the “buddy system”. Working alone with pyrophorics is strongly discouraged. All glassware used for pyrophorics should be oven-dried and free of moisture. Review the location of the safety shower, eyewash, telephone, and fire extinguisher. Keep an appropriate fire extinguisher or extinguishing material close at hand. Additional controls when handling liquid pyrophoric materials . Secure pyrophoric reagent bottle to stand. Secure the syringe so if the plunger blows out of the body of the syringe the contents will not splash anyone. -
0 3 2 Material Safety Data Sheet
He a lt h 3 0 Fire 0 2 3 Re a c t iv it y 2 Pe rs o n a l Pro t e c t io n Material Safety Data Sheet Boron tribromide MSDS Section 1: Chemical Product and Company Identification Product Name: Boron tribromide Contact Information: Catalog Codes: 20309 Finar Limited 184-186/P, Chacharwadi Vasna, CAS#: 10294-33-4 Sarkhej-Bavla Highway, Ta.: Sanand, Dist.: Ahmedabad, RTECS: ED7400000 Email: [email protected] TSCA: TSCA 8(b) inventory: Boron tribromide Web: www.finarchemicals.com CI#: Not available. Synonym: Chemical Name: Not available. Chemical Formula: BBr3 Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Boron tribromide 10294-33-4 100 Toxicological Data on Ingredients: Boron tribromide LD50: Not available. LC50: Not available. Section 3: Hazards Identification Potential Acute Health Effects: Extremely hazardous in case of skin contact (irritant), of eye contact (irritant), of inhalation (lung irritant). Very hazardous in case of ingestion, . Slightly hazardous in case of skin contact (corrosive, permeator). Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering. Potential Chronic Health Effects: CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. Repeated or prolonged contact with spray mist may produce chronic eye irritation and severe skin irritation. -
List of Reactive Chemicals
LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Pyrophoric Handling Procedure
Pyrophoric Handling Procedure Carnegie Mellon Environmental Health & Safety 5000 Forbes Avenue FMS Building, 3rd Floor Pittsburgh, PA 15213 412-268‐8182 www.cmu.edu.ehs October 2019 TABLE OF CONTENTS Introduction ........................................................................................................................................3 Examples of Pyrophoric/Water Reactive Materials ...........................................................................3 Hazards ..............................................................................................................................................3 Controlling the Hazards .....................................................................................................................3 Personal Protective Equipment (PPE) ...............................................................................................4 Eye Protection ........................................................................................................................4 Skin Protection .......................................................................................................................4 Eyewash/Safety Showers .......................................................................................................4 Fume Hood.............................................................................................................................4 Glove (dry) box ......................................................................................................................5 -
Boron Tribromide As a Reagent for Anti-Markovnikov Addition of Hbr to Cyclopropanes† Cite This: Chem
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Boron tribromide as a reagent for anti-Markovnikov addition of HBr to cyclopropanes† Cite this: Chem. Sci., 2020, 11, 9426 a b a b All publication charges for this article Matthew H. Gieuw, Shuming Chen, Zhihai Ke, K. N. Houk * have been paid for by the Royal Society and Ying-Yeung Yeung *a of Chemistry Although radical formation from a trialkylborane is well documented, the analogous reaction mode is unknown for trihaloboranes. We have discovered the generation of bromine radicals from boron Received 6th May 2020 tribromide and simple proton sources, such as water or tert-butanol, under open-flask conditions. Accepted 4th August 2020 Cyclopropanes bearing a variety of substituents were hydro- and deuterio-brominated to furnish anti- DOI: 10.1039/d0sc02567d Markovnikov products in a highly regioselective fashion. NMR mechanistic studies and DFT calculations rsc.li/chemical-science point to a radical pathway instead of the conventional ionic mechanism expected for BBr3. The Lewis acidic nature of organoboranes is well understood, Halogenation is an important class of transformations and Creative Commons Attribution 3.0 Unported Licence. but the participation of BR3 in free-radical processes was largely the resultant halogenated products can easily be manipulated overlooked until 1966.1 Since the discovery of the potential of to give a wide range of functional molecules.5 While trihalo- organoborane species to undergo radical reactions, many novel boranes have been employed as halogenating or haloborating and synthetically useful transformations were developed.2 Tri- agents, their role in reactions is either ambiguous or thought to 6 alkylboranes (BR3) can easily undergo bimolecular homolytic be exclusively Lewis acidic. -
THE REACTIONS of TRIMETHYL GROUP Va LEWIS BASES with SIMPLE BORON LEWIS ACIDS
THE REACTIONS OF TRIMETHYL GROUP Va LEWIS BASES WITH SIMPLE BORON LEWIS ACIDS by DONALD CHARLES MENTE, B.A. A DISSERTATION IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University m Partial FulfiHment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved May, 1975 AJO'^ ACKNOWLEDGMENTS The author wishes to express his sincere gratitude to Dr. Jerry L. Mills for his direction of this dissertation and to Dr. Roy E. Mitchell for his aid during the calori- metric determinations. Also acknowledged are the Texas Tech Graduate School and the Robert A. Welch Foundation for their generous financial support. 11 CONTENTS ACKNOWLEDGMENTS ii LIST OF TABLES iv LIST OF FIGURES vi I. INTRODUCTION 1 II. EXPERIMENTAL 5 Instrumental 5 Special Apparatus 6 Gas-Phase Calorimetry 8 Preparations 16 III. RESULTS AND DISCUSSION 22 Calorimetry 22 Nmr Spectra 30 Vibrational Spectra 33 Mass Spectra 44 Conductivity Data ^ 44 Tensiometric Titrations 47 Gas-Phase Displacement Reactions 49 Melting Point Data 50 IV. SUMMARY AND CONCLUSIONS 52 REFERENCES 53 APPENDICES 57 A. REPRESENTATIVE SPECTRA 57 B. SUGGESTIONS FOR FURTHER INVESTIGATION 59 • • • 111 LIST OF TABLES I. Measured Enthalpies, AH (kcal/mole ) . 24 II. NMR Data: Chemical Shifts of Lewis Base Methyl Protons in Benzene-d^ Solvent .... 31 III. NMR Data: Chemical Shifts of Lewis Base Methyl Protons in Methylene Chloride Solvent 33 IV. ~^ Infrared Spectral Absorptions of Trimethyphos- phine and Trimethylphosphine Adducts with Tentative Assignments 34 V. Infrared Spectral Absorptions of Trimethyl- arsine and Trimethylarsine Adducts with Tentative Assignments 35 VI. Infrared Spectral Absorptions of Trimethyl- stibine and Trimethylstibine Adducts with Tentative Assignments 36 VII.