The Cryosphere, 9, 565–585, 2015 www.the-cryosphere.net/9/565/2015/ doi:10.5194/tc-9-565-2015 © Author(s) 2015. CC Attribution 3.0 License. Changes in the southeast Vatnajökull ice cap, Iceland, between ∼ 1890 and 2010 H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and Sv. Guðmundsson Institute of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland Correspondence to: H. Hannesdóttir (
[email protected]) Received: 8 August 2014 – Published in The Cryosphere Discuss.: 5 September 2014 Revised: 7 February 2015 – Accepted: 11 February 2015 – Published: 19 March 2015 Abstract. Area and volume changes and the average majority of glaciers worldwide have been losing mass during geodetic mass balance of the non-surging outlet glaciers of the past century (Vaughan et al., 2013), and a number of the southeast Vatnajökull ice cap, Iceland, during different studies have estimated the volume loss and the mass balance time periods between ∼ 1890 and 2010, are derived from for the post-LIA period by various methods (e.g. Rabatel a multi-temporal glacier inventory. A series of digital et al., 2006; Bauder et al., 2007; Knoll et al., 2008; Lüthi elevation models (DEMs) (∼ 1890, 1904, 1936, 1945, 1989, et al., 2010; Glasser et al., 2011). Knowledge of the ice 2002, 2010) are compiled from glacial geomorphological volume stored in glaciers at different times is important features, historical photographs, maps, aerial images, DGPS for past, current and future estimates of sea-level rise and measurements and a lidar survey. Given the mapped basal water resources. More than half of the land ice contribution topography, we estimate volume changes since the end of the to sea-level rise in the 20th century comes from ice caps Little Ice Age (LIA) ∼ 1890.