THE Orlefajokull ERUPTION of 1362
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion. -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Geothermal Gradient Calculation Method: a Case Study of Hoffell Low- Temperature Field, Se-Iceland
International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 4(6) pp. 163-175, September, 2014 DOI: http:/dx.doi.org/10.14303/irjgm.2014.026 Available online http://www.interesjournals.org/irjgm Copyright©2014 International Research Journals Full Length Research Paper Geothermal Gradient Calculation Method: A Case Study of Hoffell Low- Temperature Field, Se-Iceland Mohammed Masum Geological Survey of Bangladesh, 153, Pioneer Road, Segunbagicha, Dhaka-1000, BANGLADESH E-mail: [email protected] ABSTRACT The study area is a part of the Geitafell central volcano in southeast Iceland. This area has been studied extensively for the exploration of geothermal resources, in particular low-temperature, as well as for research purposes. During the geothermal exploration, geological maps should emphasize on young corresponding rocks that could be act as heat sources at depth. The distribution and nature of fractures, faults as well as the distribution and nature of hydrothermal alteration also have to known. This report describes the results of a gradient calculation method which applied to low-temperature geothermal field in SE Iceland. The aim of the study was to familiarize the author with geothermal gradient mapping, low-temperature geothermal manifestations, as well as studying the site selection for production/exploration well drilling. Another goal of this study was to make geothermal maps of a volcanic field and to analyse if some relationship could be established between the tectonic settings and the geothermal alteration of the study area. The geothermal model of the drilled area is consistent with the existence of a structurally controlled low-temperature geothermal reservoir at various depths ranging from 50 to 600 m. -
Subglacial and Submarine Volcanism in Iceland
Mars Polar Science 2000 4078.pdf SUBGLACIAL AND SUBMARINE VOLCANISM IN ICELAND. S. P. Jakobsson, Icelandic Inst. of Natural His- tory, P. O. Box 5320, 125 Reykjavik, Iceland Introduction: Iceland is the largest landmass ex- mounds, ridges and tuyas [5]. The thickness of basal posed along the Mid-Ocean Ridge System. It has been basaltic pillow lava piles often exceeds 60-80 meters constructed over the past 16 Ma by basaltic to silicic and a 300 m thick section has been reported. Pillow volcanic activity occurring at the Mid-Atlantic Ridge, lavas may also form lenses or pods at a higher level in and is topographically elevated because of the abundant the volcanoes. igneous material produced in association with the Ice- It has been suggested that at a water depth less than land hot spot, the center of which is thought to be lo- approximately 100-150 m, basaltic phreatic explosions cated beneath Vatnajokull glacier [1]. The axial rift produce hydroclastites. It appears feasible to subdivide zones which run through Iceland from southwest to the hyaloclastites of the Icelandic ridges and tuyas, ge- northeast are in direct continuation of the crestal zones netically into two main types. A substantial part of the of the Mid Atlantic Ridge and are among the most ac- base of the submarine Surtsey tuya is poorly bedded, tive volcanic zones on Earth. unsorted, hydroclastite, which probably was quenched Subglacial Volcanism: Volcanic accumulations of and rapidly accumulated below the seawater level with- hyaloclastites which are deposits formed by the intru- out penetrating the surface [6]. Only 1-2 % of the vol- sion of lava beneath water or ice and the consequent ume of extruded material in the 1996 Gjalp eruption fell shattering into small angular vitric particles, combined as air-fall tephra, the bulk piled up below the ice [4]. -
Wonderful Fjarðabyggð You’Re in a Good Place FJARÐABYGGÐ
Wonderful Fjarðabyggð You’re in a Good Place FJARÐABYGGÐ Mj F 1 4 Information centres in Fjarðabyggð: 1 Museum House, Neskaupstaður 2 East Iceland Maritime Museum, Eskifjörður 3 Icelandic Wartime Museum, Reyðarfjörður 4 Kolfreyja Gallery, Fáskrúðsfjörður 5 Brekkan, Stöðvarfjörður 6 Sólbrekka, Mjóifjörður 2 5 The information centres in Fjarðabyggð are open in the afternoon seven days a week, June 1st to August 31st. Photographers: Kristinn Þorsteinsson, Pétur Sörensson, and others. Editor: Helga Guðrún Jónasdóttir Photo editor: Pétur Sörensson Published by: Fjarðabyggð municipality, 2014 Design and layout: Héraðsprent, www.heradsprent.is 3 6 No responsibility is taken for the reliability of information on shopping and other services. Hoffell, Fáskrúðsfjörður Mj F A hearty welcome to Fjarðabyggð! Our community’s magnificent mountains and picturesque fjords are just part of what Fjarðabyggð has to offer. Equally memorable to those who visit are the society Sandfell, Fáskrúðsfjörður and culture of our seaside villages, each nestling with its own spirit and character along Iceland’s easternmost coast. Every year, the Fjarðabyggð combination of landscape, history and personalities attracts more visitors. You can easily find the hotel or guest house best suited to your desires, or choose one of Fjarðabyggð’s six campgrounds. You’ll also find plenty of choices for recrea- tion, in a municipality where both mountain slopes and seashores lie just beyond your doorstep. No matter where else you’re heading in East Iceland, Fjarðabyggð will be worth -
Paleoceanography
PUBLICATIONS Paleoceanography RESEARCH ARTICLE Sea surface temperature control on the distribution 10.1002/2014PA002625 of far-traveled Southern Ocean ice-rafted Key Points: detritus during the Pliocene • New Pliocene East Antarctic IRD record and iceberg trajectory-melting model C. P. Cook1,2,3, D. J. Hill4,5, Tina van de Flierdt3, T. Williams6, S. R. Hemming6,7, A. M. Dolan4, • Increase in remotely sourced IRD 8 9 10 11 9 between ~3.27 and ~2.65 Ma due E. L. Pierce , C. Escutia , D. Harwood , G. Cortese , and J. J. Gonzales to cooling SSTs 1 2 • Evidence for ice sheet retreat in the Grantham Institute for Climate Change, Imperial College London, London, UK, Now at Department of Geological Sciences, Aurora Basin during interglacials University of Florida, Gainesville, Florida, USA, 3Department of Earth Sciences and Engineering, Imperial College London, London, UK, 4School of Earth and Environment, University of Leeds, Leeds, UK, 5British Geological Survey, Nottingham, UK, 6Lamont-Doherty Earth Observatory, Palisades, New York, USA, 7Department of Earth and Environmental Sciences, Columbia Supporting Information: 8 • Readme University, Lamont-Doherty Earth Observatory, Palisades, New York, USA, Department of Geosciences, Wellesley College, • Text S1 and Tables S1–S3 Wellesley, Massachusetts, USA, 9Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain, 10Department of Geology, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 11Department of Paleontology, GNS Science, Lower Hutt, New Zealand Correspondence to: C. P. Cook, c.cook@ufl.edu Abstract The flux and provenance of ice-rafted detritus (IRD) deposited in the Southern Ocean can reveal information about the past instability of Antarctica’s ice sheets during different climatic conditions. -
Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica
Polarforschung 57 1/2: 27-41, 1987 Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica By G. Wörner and L. Viereck* Summary: Sections through Shield Nunatak vo1cano, an alkali basaltic subglacial table-mountain from the Mt. Melbourne Volcanic Field, are descrlbed. Resting on a base of older lava flows and a fossile tillite iayer, the volcano is formed mainly by massive ash and lapilli (mass flow) deposits while pillow lavas are absent. The recurrent stage of emergence from subglacial to subaerial conditions is characterized by de velopment of tuff rings from explosive interaction between magma and melt water, complex ash- and lapilli deposits, including lava flows brecciated by water-interaction and a subaerial basaltie ash-flow deposit. The sequence is capped by subaerial tuff rings, lava flows, scoria cones and reworked tephra. Available data on subaquatlc explosive voJcanism indicate that early Shield Nunatak basaltic lavas erupted un der less than 300 m of ice cover: later Iavas erupted under shallow-water and subaerial conditions. Shield Nunatak probably formed during a glacial period (possibly the last) when the ice thtckness in the Mt. Melbourne area must have been at least 200 m greater than at present. The volcano has suffered only minor glacial erosion and still almost has its original shape. Zusammenfassung: Es werden Profile beschrieben durch einen alkalibasaltischen subglazialen Vulkan (Shield Nunatak) im Mt. Melbourne Vulkanfeld. Die Unterlage des Vulkans wird von einer Serie subaerischer Lavaströme intermediärer Zusammensetzung (Mugearit) gebildet. Über einer Lage von Paleo-Till bilden massive Aschenablagerungen die Basis der subglazialen Sequenz. Kissenlaven fehlen. -
Höfn Is Known Nearby Are Dysjarklettur And, Below the Main Road, Fimmhundraðadý
farm Dynjandi, a little west of the road up to the Almannaskarð pass. 15. Hoffellsdalur been appointed to consolidate royal power in Iceland. In 1433 Teitur investigated in 1902 by Daniel Bruun, who wrote: 'It was shown beyond fishing vessels land rich catches throughout the year; Höfn is known Nearby are Dysjarklettur and, below the main road, Fimmhundraðadý. Starting point: Below the farm at Hoffell and others attacked the bishop at the cathedral at Skálholt, stuck him in doubt that a man had been buried towards the south of the ridge, 3-4 especially for lobsters in spring and herring in autumn. The harbour About half way along is the waterfall Bergárfoss (see route 5). Route description: Fairly easy day's walk, mostly quite even; about a sack, and drowned him in a nearby river. feet above the floodplain. Other finds included a breastplate and traces bustles with life and is a great attraction for tourists. Walking trails in Nes 12 km to the sheltered dell at Dalsstafn at the head of the valley, where of a thin layer of coal under and around the bones. In an extension to the north there was a horse burial, or perhaps just a horse's head. There The rich farmlands around Höfn produce potatoes, milk and lamb, as 7. Laxárdalur there is glacial debris from when the ice extended this far down until about a century ago. Start off over the mudflats below Hoffell farm were also several horse's teeth. There are no records of brooches well as some beef and pork. -
Timeline Reconstruction of Holocene Jökulhlaups Along the Jökulsá Á
Copyright by Greta Hoe Wells 2016 The Thesis Committee for Greta Hoe Wells Certifies that this is the approved version of the following thesis: Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland APPROVED BY SUPERVISING COMMITTEE: Supervisor: Sheryl Luzzadder-Beach Timothy P. Beach Daene C. McKinney Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland by Greta Hoe Wells, B.A. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2016 Abstract Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland Greta Hoe Wells, M.A. The University of Texas at Austin, 2016 Supervisor: Sheryl Luzzadder-Beach The Jökulsá á Fjöllum is Iceland’s second longest river, draining from the Vatnajökull ice cap and winding for over 200 km through the eastern highlands before emptying into the Arctic Ocean. Hydrothermal activity and subglacial eruptions beneath Vatnajökull generate enormous quantities of meltwater, which can drain catastrophically in outburst floods, known as jökulhlaups. Jökulhlaups have flowed through the Jökulsá á Fjöllum channel throughout the Holocene, but intense debate exists over their timing and magnitude. While previous studies report a peak flood discharge of 0.9 x 106 m3 s-1, Howard et al. (2012) found evidence of a peak discharge of 2.2 x 107 m3 s-1, which would make this the largest known flood on Earth. This project seeks to test Howard et al.’s (2012) hypothesis and, more broadly, to reconstruct a timeline of Holocene jökulhlaups iv along the Jökulsá á Fjöllum. -
The Mechanics of Subglacial Basaltic Lava Flow Emplacement: Inferring Paleo-Ice Conditions
THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS by Jefferson D. G. Hungerford B. S. in Geology, University of Washington, 2002 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH FACULTY OF THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jefferson D. G. Hungerford It was defended on November 8, 2013 and approved by Dr. William Harbert, Professor, Department of Geology and Planetary Science Dr. Thomas A. Anderson, Professor Emeritus, Department of Geology and Planetary Science Dr. Daniel J. Bain, Assistant Professor, Department of Geology and Planetary Science Dr. Tracy K. P. Gregg, Associate Professor, Department of Geology, University at Buffalo Dissertation Advisor: Dr. Michael S. Ramsey, Professor, Department of Geology and Planetary Science ii Copyright © by Jefferson D. G. Hungerford 2013 iii THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS Jefferson D. G. Hungerford, PhD University of Pittsburgh, 2013 Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM). -
Lilja Karlsdóttir-Thesis-Skemman
Hybridisation of Icelandic birch in the Holocene reflected in pollen Lilja Karlsdóttir Hybridisation of Icelandic birch in the Holocene reflected in pollen Lilja Karlsdóttir Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in biology Advisor Kesara Anamthawat-Jónsson PhD Committee Margrét Hallsdóttir Ægir Þór Þórsson Ólafur Eggertsson Ása Aradóttir Opponents Christopher J Caseldine Guðrún Gísladóttir Faculty of Life and Environmental Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, March 2014 Title: Hybridisation of Icelandic birch in the Holocene reflected in pollen Icelandic title: Kynblöndun ilmbjarkar og fjalldrapa á nútíma lesin af frjókornum Short title: Hybridisation of Icelandic birch in the Holocene Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in biology Copyright © 2014 Lilja Karlsdóttir Reprints are published with kind permission of the journals concerned. All rights reserved Faculty of Life and Environmental Sciences School of Engineering and Natural Sciences University of Iceland Askja - Sturlugata 7 101, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Lilja Karlsdóttir, 2014 Hybridisation of Icelandic birch in the Holocene reflected in pollen , PhD dissertation, Faculty of Life and Environmental Sciences, University of Iceland, 116 pp. ISBN 978-9935-9146-3-7 Printing: Háskólaprent ehf. Reykjavik, Iceland, March 2014 Dedication To all the hikers of Icelandic wilderness marvelling at the sight of a treelike growth in the barren landscape Abstract The introgressive hybridisation between downy birch, Betula pubescens Ehrh., and dwarf birch, B. nana L., has been confirmed in Iceland but limited knowledge on the extent or timing of such hybridisation exists. The present study focuses on hybridisation in the Holocene, its frequency and scope, and the environmental factors initiating hybridisation. -
ANDRILL: Has It Accomplished All It Set out to Achieve? Llara Macgilloway
PCAS 15 (2012/2013) Critical Literature Review (ANTA602) ANDRILL: Has it accomplished all it set out to achieve? Llara MacGilloway Student ID: 19690222 Word count: 3300(excluding abstract, reference list and appendix) Abstract ANDRILL (ANtarctic geological DRILLing) is a multinational drilling project that is drilling into sediments under the Ross Ice Shelf in Antarctica. ANDRILL are looking at sediment cores to find evidence supporting the theory of past paleoclimatic changes in the Ross Ice Shelf area (and globally). This review evaluates the ANDRILL project to see if it has met its own conditions and to see if it has added to the geological and climatic knowledge of the Antarctic Region. ANDRILL has currently completed drilling in two sites (McMurdo Ice Shelf (MIS) Project and Southern McMurdo Sounds (SMS) Project) and has recovered 1285m of core material from the MIS project with sediments dating back to ~13 Ma, and another 1138m drill core from the SMS project with sediments dating back to ~20 Ma. Through analysis of these cores, ANDRILL has been able to locate each ice sheet retreat and advance in the vicinity of the drill sites over the past 20 million years. So far, there has been a lot of analysis on the sediment cores themselves, however there is a lack of correlation between these sediments and the dates they were deposited and how this relates to past and future climatic changes. 1 | P a g e Contents Abstract 1 Introduction to ANDRILL 3 ANDRILL findings: For biota origins 4 For glacial and interglacial events 4 For the influences of the global system 5 For geological changes 6 Summary of findings: have ANDRILL met their objectives? 9 References 10 Appendix 1: Previously known geological and ice sheet history of the Ross Ice Shelf area 13 2 | P a g e Introduction to ANDRILL ANDRILL (ANtarctic Geological DRILLing) is a multinational project that includes over 200 scientists, students and educators from 7 different nations (ANDRILL, n.d.(a)).