When Genes Go Bad Addiction

Total Page:16

File Type:pdf, Size:1020Kb

When Genes Go Bad Addiction EDITORIAL What’s on the Label? hen you are buying food, are you one of the 30% of shoppers (an estimate in the United Kingdom) who always read the labels, or one of the 20% who rarely or never give them a glance? Do you know what to make of them if you read them? Labels are meant to inform you and to help you to choose. But when you go shopping, how much time do you have to read about the differences between 30 types of chicken soup or 300 varieties of breakfast cereal? Consumers seem to want more and Wmore choice, and consumer pressure groups definitely want more information on food labels. Choice and information are also attractive to regulators, because these options are less likely to be viewed as restricting individual freedom or stifling food industry innovation than the alternative of regulating food content. In the United States, labeling regulations are largely about the material content. In Europe, the method and place of production may also be specified in law, even if they make no material difference to the contents. This difference in approach is evident in the labeling of genetically modified (GM) foods. Whether the plant from which a food is made is GM is irrelevant in the United States, given its emphasis on overall content rather than process. But in Europe, labeling of foods containing DNA or protein from GM plants is mandatory, and legislation has now been extended to include purified derivatives such as glucose syrup and canola oil (but not products from animals fed on GM animal feed or products made with GM technology, such as cheese). Transatlantic differences in food labeling are also apparent when it comes to the biggest current challenge for food policy: obesity. Doing something about obesity is especially difficult for governments and regulators, because diet and lifestyle are in the territory of personal freedom, not state intervention. At the same time, the health care costs are potentially huge, so the pressure for action is on. The blend of action that is emerging, in both Europe and the United States, includes voluntary changes by the food industry, public education, and better labeling. Some countries and U.S. states are going even further; for instance, by restricting what can be sold in school vending machines and restricting television advertising. All of these changes are meant to make it easier for people to choose a healthy diet. The world’s fattest nation, the United States, has what is arguably the best nutrition labeling, with a mandatory nutrition facts panel. So would better labeling help? The largest food retailer in the United Kingdom, Tesco, has said that it plans to test a “traffic light” system, using red, yellow, and green colors to give consumers simple information about the main nutrients. Some object to this because of the potential implication that there are good (green) and bad (red) foods, whereas the traditional mantra from nutritionists is that there are only good and bad diets. But the food/diet distinction has changed as many people rely increasingly on ready-made meals or snacks. Research in the United Kingdom suggests that people would actually favor a simple sign-posting system such as traffic lights. The food industry is responding to public interest in diet and health by making foods that claim to have specific health benefits. These come close to the border between food and medicine. You can buy cholesterol- reducing margarine, eggs that contain long-chain omega-3 unsaturated fatty acids, and yogurts that claim to help you balance your gut flora. The U.S. Food and Drug Administration has a three-tiered system for such health claims, depending on the strength of the evidence for the claim. The European Union does not have specific regulations, but plans to introduce rules within the next 2 years that will require the independent evaluation of health claims by the European Food Safety Authority. The implications of science-based regulation are enormous for the worldwide food industry, both because products that claim to improve your health are generally highly profitable and because, in the science of nutrition, there is often disagreement among experts. Over the next decade, increases in our understanding of the relationship between an individual’s genetic makeup and his or her nutritional needs will open up a whole new area for debate about what goes on the label. The world of choice is not going to get any easier. John Krebs John Krebs is chairman of the Food Standards Agency, UK. CREDIT: RED/GETTY IMAGES PHOTODISC www.sciencemag.org SCIENCE VOL 306 12 NOVEMBER 2004 1101 Published by AAAS H IGHLIGHTS OF THE RECENT LITERATURE EDITORS’ CHOICE edited by Gilbert Chin CELL BIOLOGY Endocytosis at the Hub In clathrin-mediated endocytosis, a network of proteins assembles on the cytoplasmic surface of the plasma membrane and promotes the pinching off of a membrane-bounded clathrin-coated vesicle. Together, the proteins select cargoes that are car- ried either inside the vesicle or in its membrane, modify the shape of the membrane, and drive invagination, vesicle scission, and eventual uncoating. A key player in this process is the AP2 clathrin adaptor protein, which is involved in concentrating selected cargo in the newly forming clathrin-coated pits. In protein interaction networks, hubs are proteins that have dispropor- tionately high numbers of interaction partners; in biological processes, hubs provide a temporal or spatial ordering to protein interactions. Praefcke et al. treat clathrin-mediated endocytosis as a module of a net- work and show how the α-appendage part of the AP2 protein works as an interaction hub. Only after being concentrated at sites of endocytosis do the appendages provide a multivalent binding platform (hub) for interac- tion partners (i.e., endocytic cargoes or other cargo adaptors). Thus, the partners will then be represented according to their relative affinities and concentrations in endocytic clathrin-coated pits and vesicles, even though any individual interactions will have been transient. — SMH EMBO J. 10.1038/sj.emboj.7600445 (2004). Interacting partners. APPLIED PHYSICS those regions that are buried To assess the amount of IMMUNOLOGY Registering under several layers of epitaxially clathrate stored and to Three in One grown semiconductor material. evaluate its stability, Buffett Nanostructures Ruess et al. have used a registra- and Archer developed a Vaccines are designed to The manipulation of atoms tion technique that allows the mechanistic model for generate robust immunity using scanning tunneling alignment of macroscopic clathrate dynamics based on through the coactivation of microscopy (STM) has long electrodes to the nanoscale experimental and theoretical the adaptive and innate arms promised the ability to fabricate device elements buried under- data on its stability and on of the immune system. This is nanometer- and atomic-scale neath. The registration markers factors affecting its formation achieved by steering tripartite electronic device structures. are etched into the substrate and release, such as the responses to antigenic epitopes However, the realization of before the STM manipulation supply of carbon to sediments by helper T (TH) cells, antigen- presenting dendritic cells Registration markers stage and so should be a and its diagenesis, storage, 1969 (2004) Buried nanostructure general method for bottom-up and oxygen content. (DCs), and antibody-producing 4, . 24nm epitaxial fabrication of other nanoscale Application to the current B cells or the cytotoxic silicon device structures. — ISO ocean basin implies that the lymphocytes (CTLs) that Nano Lett. 4, 1969 (2004). ultimately execute pathogen Contact leads global inventory is on the 18 clearance. However, the poor ET AL., NANO LETT order of 10 g of carbon 25 µm GEOLOGY stored as methane gas and inherent immunogenicity of clathrate. The modeling peptide epitopes favored in Si substrate Taking Inventory results imply that increasing some vaccine formulas dictates Schematic showing An enormous amount of temperature would likely the need for including complex contacts (yellow) to a buried methane, an important green- deplete this inventory and potentially toxic adjuvants 90-nm-wide quantum wire. house gas, is stored in considerably; rebuilding that stimulate the essential sediments in the ocean basins would take several million priming activity of DCs. robust devices has been a as icy methane clathrate and years. The model also reveals Jackson et al. have refined difficult goal to attain simply as gas trapped by this ice and that unless the oxygen this approach by synthesizing because of the engineering by sediments. Catastrophic content of the deep oceans structures containing TH . RUESS 10.1038/SJ.EMBOJ.7600445 (2004)(BOTTOM) problem of making electrical release of methane from this was lower than at present, epitopes coupled to B cell contact to the fabricated warehouse has been suggested not enough methane would or CTL target epitopes. These structure. The problem is that to have caused abrupt climate have been stored to account were linked via a lipid moiety, ET AL., EMBO J once the sample is removed change (warming) in the past, for the carbon isotope shift which served to activate DCs from the ultrahigh vacuum and there are concerns that a and the abrupt warming at through binding and activation where the STM atomic warmer future climate may the Paleocene-Eocene of the innate signaling receptor manipulation has taken place, destabilize this reservoir, boundary, about 55 million TLR2. With different epitope the actual location of the which would enhance years ago. — BH CREDITS: PRAEFCKE (TOP) structure is lost, particularly warming further. Earth Planet. Sci. Lett. 227, 185 (2004). CONTINUED ON PAGE 1105 www.sciencemag.org SCIENCE VOL 306 12 NOVEMBER 2004 1103 Published by AAAS CONTINUED FROM 1103 EDITORS’ CHOICE combinations, strong antibody and CTL conjunction with solid particles, are used responses could be elicited in models of as stabilizers because they reduce the viral and bacterial infection, as well as to surface tension of the liquid, preventing tumors, and were comparable to responses the bubbles from coalescing.
Recommended publications
  • Two Polymorphic Cholesterol Monohydrate Crystal Structures Form in Macrophage Culture Models of Atherosclerosis
    Two polymorphic cholesterol monohydrate crystal INAUGURAL ARTICLE structures form in macrophage culture models of atherosclerosis Neta Varsanoa, Fabio Beghib, Nadav Eladc, Eva Pereirod, Tali Dadoshc, Iddo Pinkasc, Ana J. Perez-Bernad, Xueting Jine, Howard S. Kruthe, Leslie Leiserowitzf, and Lia Addadia,1 aDepartment of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel; bDepartment of Chemistry, Università Degli Studi Di Milano, I-20122 Milano, Italy; cDepartment of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel; dMISTRAL Beamline−Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; eExperimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1422; and fDepartment of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2017. Contributed by Lia Addadi, June 12, 2018 (sent for review February 20, 2018; reviewed by Bart Kahr and Samuel I. Stupp) The formation of atherosclerotic plaques in the blood vessel walls levels increase in the macrophage cell, they become “foam cells,” is the result of LDL particle uptake, and consequently of choles- and initiate formation of atherosclerotic plaques (8–11). Sub- terol accumulation in macrophage cells. Excess cholesterol accu- sequently, unesterified cholesterol supersaturation in the cells may mulation eventually results in cholesterol crystal deposition, the lead to crystal precipitation, before and/or after cell death (12– hallmark of mature atheromas. We followed the formation of 14). Crystalline cholesterol is not easily dissolved or removed from cholesterol crystals in J774A.1 macrophage cells with time, during the plaques (6).
    [Show full text]
  • Arteriosclerosis, Thrombosis and Vascular Biology I Peripheral Vascular Disease
    Cardiovascular diseases afflict people of all races, ethnicities, genders, religions, ages, sexual orientations, national origins and disabilities. The American Heart Association is committed to ensuring that our workforce and volunteers reflect the world’s diverse population. We know that such diversity will enrich us with the talent, energy, perspective and inspiration we need to achieve our mission: building healthier lives, free of cardiovascular diseases and stroke. Arteriosclerosis, Thrombosis and Vascular Biology I For information on upcoming Peripheral Vascular Disease American Heart Association Scientific Sessions 2015 Scientific Conferences, Final Program and Abstracts visit my.americanheart.org May 7-9, 2015 | Hilton San Francisco Union Square Hotel | San Francisco, California National Center 7272 Greenville Avenue Dallas, Texas 75231-4596 In Collaboration with the Council on Functional Genomics and Translational Biology and the Society of ©2015, American Heart Association, Inc. Vascular Surgery’s Vascular Research Initiatives Conference. All rights reserved. Unauthorized use prohibited. 4/15JN0222 my.americanheart.org Program at a Glance Wednesday Thursday Friday Saturday May 6, 2015 May 7, 2015 May 8, 2015 May 9, 2015 7:00 AM Registration, Early Registration, Early Continental Career Continental Career Separate registration may be required Breakfast, Training Breakfast, Training for the meetings listed below. Exhbits Session Exhibits Session PROFESSIONAL MEMBERSHIP 7:30 AM 8:00–10:00 8:00–9:30 Registration my.americanheart.org Conference Opening and Plenary Session III 8:00 AM 8:00–6:00 Plenary Session I Highlights from the ATVB VRIC 8:30 AM Functional Genomics: Journal 8:30–10:30 2015 Enhancer Biology and Poster Session and I’m a Member.
    [Show full text]
  • Form and Function of F-Actin During Biomineralization Revealed from Live Experiments on Foraminifera
    Form and function of F-actin during biomineralization revealed from live experiments on foraminifera Jarosław Tyszkaa,1, Ulf Bickmeyerb, Markus Raitzschc,d, Jelle Bijmac, Karina Kaczmarekc, Antje Mewesc, Paweł Topae, and Max Jansef aResearch Centre in Kraków, Institute of Geological Sciences, Polish Academy of Sciences, 31-002 Kraków, Poland; bEcological Chemistry, Alfred-Wegener- Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany; cMarine Biogeosciences, Alfred-Wegener-Institut Helmholtz- Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany; dInstitut für Mineralogie, Leibniz Universität Hannover, 30167 Hannover, Germany; eDepartment of Computer Science, AGH University of Science and Technology, 30-052, Kraków, Poland; and fBurgers’ Ocean, Royal Burgers’ Zoo, 6816 SH Arnhem, The Netherlands Edited by Lia Addadi, Weizmann Institute of Science, Rehovot, Israel, and approved January 23, 2019 (received for review June 15, 2018) Although the emergence of complex biomineralized forms has Pioneers who studied living foraminifera described that been investigated for over a century, still little is known on how chamber formation was progressing on what they called “active single cells control morphology of skeletal structures, such as matrix” (15, 16). Hottinger (1) suggested that foraminiferal frustules, shells, spicules, or scales. We have run experiments on chamber morphology depended on the length of rhizopodia the shell formation in foraminifera, unicellular, mainly marine (branching pseudopodia) extruded from the previous chamber organisms that can build shells by successive additions of chambers. and supported by microtubular cytoskeleton. Recent investiga- We used live imaging to discover that all stages of chamber/shell tions on theoretical models of foraminiferal morphogenesis implied formation are controlled by dedicated actin-driven pseudopodial structures.
    [Show full text]
  • Pupa Gilbert (Née Gelsomina De Stasio) Curriculum Vitae
    Pupa Gilbert (née Gelsomina De Stasio) Curriculum Vitae Personal Mailing address Citizenships : American, Italian University of Wisconsin Date of birth : September 29, 1964 Department of Physics 1150 University Avenue APS Member # 60003786 (since 1990) Madison WI 53706 AAAS Member # 09932607 (since 2000) Ph. 608-262-5829 MRS Member # 00265038 (since 2008) Fax 608-265-2334 ACS Member # 30130319 (since 2010) Lab Ph. 608-265-3767 MSA Member # 31099 (since 2010) Cell phone 608-358-0164 AGU Member # 000265219 (since 2013) Geochem Soc Member # 203444 (since 2018) ORCID 0000-0002-0139-2099 Education Doctoral Degree in Physics (Laurea), First University of Rome “La Sapienza”, 1987. Dissertation: "Design and construction of the synchrotron beamline PLASTIQUE for time resolved fluorescence in the frequency domain. Testing of parinaric acid to probe the structure and dynamics of cell membranes." Advisors: Filippo Conti and Tiziana Parasassi. Additional classes taken at Harvard University: Geobiology and the history of life (EPS 181) Fall 2014, and Historical Geobiology (EPS 56) Spring 2015. Positions Held (current in red) - August 28, 2019-2021 Visiting Faculty Scientist, Lawrence BerKeley National Labolatory, BerKeley, CA. - October 2018- Vilas Distinguished Achievement Professor, UW-Madison, WI. - January 2018- January 2021: Member of the Scientific Advisory Committee, Advanced Light Source, LBNL, BerKeley, CA. - Fall 2016-present: Professor (0% appointment), Geoscience Department, UW-Madison. - Summer 2016: Radcliffe Fellow, Harvard University. - 2014-2015: Radcliffe Fellow, Harvard University. - 2012-2015: Principal Investigator of the Approved Program "Spectromicroscopy of Biominerals", guaranteeing 8% of the available beamtime on beamline 11.0.1.1, PEEM-3, Advanced Light Source, Berkeley, CA. - February 2011-present: Professor (0% appointment), Chemistry Department, UW- Madison.
    [Show full text]
  • The Interuniversity Institute for Marine Sciences in Eilat Most Active Non-Resident Researchers
    The Interuniversity Institute for Marine Sciences in Eilat Most Active Non-Resident Researchers Short CVs and lists of 5 significant recent publications Abelson, Avigdor – Tel Aviv U. Lazar, Boaz –Hebrew U. Abramovich, Sigal – Ben Gurion U. Levy, Oren – Bar Ilan U. Addadi, Lia – Weizmann Inst. Lindell, Debbie – Technion Agnon, Amotz –Hebrew Univ. Lotan, Tamar – U. Haifa Beja, Oded – Technion Loya, Yossi – Tel Aviv U. Belmaker, Jonathan – Tel Aviv U. Mass, Tali – U. Haifa Benayahu, Yehuda – Tel Aviv U. Oren, Aharon – Hebrew U. Berman-Frank, Ilana – Bar Ilan U. Shashar, Nadav – Ben Gurion U. Dubinsky, Zvy – Bar Ilan U. Shavit, Uri – Technion Erez, Jonathan – Hebrew U. Shemesh, Aldo –Weizmann Inst. Gildor, Hezi – Hebrew U. Shenkar, Noa – Tel Aviv U. Goodman-Tchernov, Beverly – U. Haifa Sher, Daniel – Haifa U. Ilan, Micha – Tel Aviv U. Tchernov, Dan – U. Haifa Iluz, David – Bar Ilan U. Treibitz, Tali – U. Haifa Keren, Nir –Hebrew Univ. Vardi, Assaf - Weizmann Kushmaro, Ariel – Ben Gurion U. Weiner, Steve –Weizmann Inst. Prof. Abelson, Avigdor (Back to top of document) Affiliation: Dept. of Zoology, Faculty of Life Sciences, Tel Aviv University Tel. No: 972-3-6407690; 972-3-6406936; 972-54-6967555 Email: [email protected] URL: https://en-lifesci.tau.ac.il/profile/avigdor Academic Degrees: 1981-1984 B.Sc. The Hebrew University of Jerusalem, Israel 1985-1987 M.Sc. Tel Aviv University, Israel 1987-1993 Ph.D. Tel Aviv University, Israel 1993-1995 Post-doctoral fellow Stanford University, USA Academic Positions: 2007-present Associate Professor Dept. of Zoology, Tel Aviv University 1999-2007 Senior Lecturer Dept. of Zoology, Tel Aviv University 1995-1999 Lecturer Institute of Nature Conservation, Tel Aviv University Selected Awards: 1989 Mifal-Hapais - Landau Award for Graduate Students 1989 The Zoological Society of Israel - Blondheim Prize for the best M.Sc.
    [Show full text]
  • Stereochemistry at the Interface Between Crystals and Biology: Extended Abstract of the 1998 <I>Prelog</I> Lecture
    IN MEMORIAM VLADIMIR PRELOG (1906-1998) 157 CHI MIA 1999, 53. No.4 Chimia 53 (1999) 157-162 © Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293 Stereochemistry at the Interface between Crystals and Biology Extended Abstract of the 1998 Prelog Lecture Lia Addadi* So much has been said about Viado Prelog, that I cannot add much. I feel that there is only place for personal reminiscence. I pride myself in having been a friend of Vlado's, although I know I must have been among the latest. I treasure the book of his autobiography, which bears written on the frontespice: 'To Lia, from Vlado Prelog' . I met Vlado more than 20 years ago, in the mid seventies, when I was a young Ph.D. student at the Weizmann Institute. He was confronted by all our group, and submitted to a cross-fire of reports on the different projects each one of us was in- volved in. After a couple of hours, it was clear that he was tired, and wanted to stop without hurting anybody's feelings. He then stood up and said: 'I'm afraid I got to an age when, for each new piece of infor- mation I store in my memory, something else gets buried. I've heard from you many wonderful stories that I very much want to keep with me. I have, however, to keep a few other important bits of knowledge. I ask you thus to excuse me if, just in order not to forget those, I'll stop you here and thank you.' It is his extraordinary grace, unassum- ing and never presumptuous, that I be- came acquainted with then, and met again over the years.
    [Show full text]
  • Biomineralisation
    This paper is published as part of a CrystEngComm themed issue on: Biomineralisation Guest edited by Lia Addadi The Weizmann Institute of Science, Israel Published in issue 12, 2007 of CrystEngComm Images reproduced by permission of Lia Addadi (outside) and James De Yoreo (inside) Other papers published in this issue include: Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (01-10) surfaces in an aqueous environment N. H. de Leeuw and J. A. L. Rabone, CrystEngComm, 2007, DOI: 10.1039/b710974a Synthesis-dependant structural variations in amorphous calcium carbonate Raymond S. K. Lam, John M. Charnock, Alistair Lennie and Fiona C. Meldrum, CrystEngComm, 2007, DOI: 10.1039/b710895h Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystal face Boaz Pokroy and Joanna Aizenberg, CrystEngComm, 2007, DOI: 10.1039/b710294a Fine structure of nacre revealed by solid state 13C and 1H NMR Christian Jäger and Helmut Cölfen, CrystEngComm, 2007, DOI: 10.1039/b708600h Visit the CrystEngComm website for cutting-edge crystal engineering research www.rsc.org/crystengcomm PAPER www.rsc.org/crystengcomm | CrystEngComm Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystal face Boaz Pokroy and Joanna Aizenberg Received 6th July 2007, Accepted 18th September 2007 First published as an Advance Article on the web 28th September 2007 DOI: 10.1039/b710294a The shapes of biologically formed calcite crystals are extremely versatile. Numerous studies have addressed the possible biological mechanism of crystal shape regulation. Synthetic assays have shown that the shape and morphology of calcite crystals can be modulated by inorganic or organic solution additives.
    [Show full text]
  • Abstracts BIOMIN XV: 15Th International Symposium on Biomineralization 9–13 September 2019 • Munich, Germany
    Abstracts BIOMIN XV: 15th International Symposium on Biomineralization 9–13 September 2019 • Munich, Germany 1. Keynote lectures (K1 – K8) ................................................................................................................. 2 2. Talks (T1 – T89) ................................................................................................................................... 4 3. Posters (P1 – P107) ............................................................................................................................. 31 Design/Layout Layout: www.conventus.de Editorial Deadline: 31 August 2019 1 K 1 K 3 On ion transport and concentration toward mineral formation Getting to the roots of apatite-based biomineralization of dental in sea urchin larvae hard tissues: from Conodonts and Cichlids to related Keren Kahi1, Neta Varsano1, Andrea Sorrentino2, Eva Pereiro2, Peter Rez3, bioinspired materials Steve Weiner1 and Lia Addadi*1 Elena V. Sturm*1 (née Rosseeva) 1Department of Structural Biology, Weizmann Institute of Science, Rehovot, 1Physical Chemistry, Zukunftskolleg, University of Konstanz, Konstanz, Israel Germany 2ALBA Synchrotron Light Source, MISTRAL Beamline−Experiments Division, Barcelona, Spain Chordates and especially vertebrates represent the most highly advanced and 3Department of Physics, Arizona State University, Tempe, AZ, USA complex group of organisms. The formation of their hierarchical apatite- organic based hard tissues is evolutionary optimized and exhibits high During mineralized tissue
    [Show full text]
  • Transformation Mechanism of Amorphous Calcium Carbonate Into Calcite in the Sea Urchin Larval Spicule
    NEUROSCIENCE. For the article ‘‘Rapid enhancement of two-step APPLIED BIOLOGICAL SCIENCES. For the article ‘‘Accurately quanti- wiring plasticity by estrogen and NMDA receptor activity,’’ by fying low-abundant targets amid similar sequences by revealing Deepak P. Srivastava, Kevin Woolfrey, Kelly A. Jones, Cassan- hidden correlations in oligonucleotide microarray data,’’ by dra Y. Shum, L. Leanne Lash, Geoffrey T. Swanson, and Peter Luisa A. Marcelino, Vadim Backman, Andres Donaldson, Clau- Penzes, which appeared in issue 38, September 23, 2008, of Proc dia Steadman, Janelle R. Thompson, Sarah Pacocha Preheim, Natl Acad Sci USA (105:14650–14655; first published September Cynthia Lien, Eelin Lim, Daniele Veneziano, and Martin F. 18, 2008; 10.1073͞pnas.0801581105), the authors note that the Polz, which appeared in issue 37, September 12, 2006, of Proc author name Kevin Woolfrey should have appeared as Kevin M. Natl Acad Sci USA (103:13629–13634; first published September Woolfrey. The author line has been corrected online. In addition, 1, 2006; 10.1073͞pnas.0601476103), the authors note that in Eq. in the author contributions footnote and in the Acknowledg- 4,aϪ1 was inadvertently omitted from the denominator. The ments, the initials K.W. should appear as K.M.W. The authors data in Fig. 1 were calculated using the correct equation, and this also note that due to a printer’s error, in Fig. 3A, some colors error in the published equation would make Ͻ1% difference in printed incorrectly. The corrected author line, and the corrected the values of ␤. The corrected equation appears below. figure and its legend, appear below.
    [Show full text]
  • Qnas with Lia Addadi
    QNAS QNAS QnAs with Lia Addadi Sandeep Ravindran, Science Writer Lia Addadi has spent her career studying biomineral- working on biomineralization on the crystals that form in ization: the formation of crystals in organisms. She has organisms, and I just fell in love with biomineralization. explored a wide variety of questions about the After my postdoctoral research, I started collaborating formation and structure of crystals in organisms in with Steve Weiner on biomineralization, and we con- both physiological and pathological contexts. Her tinue to do so to this day. From this work I developed an research on crystal formation in gout, atherosclerosis, interest in also investigating pathological crystalliza- and osteoporosis could lead to a better understanding tions that are much, much more complicated because of how these diseases occur. A professor of chemistry they are not controlled by the organism; they are at the Weizmann Institute of Science, Addadi was exactly what the organism doesn’twant. elected a foreign associate to the National Academy of Sciences in 2017. In her Inaugural Article, Addadi PNAS: What led you to the project described in your and colleagues investigated the formation of choles- Inaugural Article (1)? terol crystals in a cell-culture model of atherosclerosis (1). She recently spoke to PNAS about her findings. Addadi: We started to look at cholesterol crystals because they are related to pathological crystalliza- PNAS: How did you become interested in studying tion. I had the crazy idea that maybe an antibody biomineralization, particularly in a pathological context? could be isolated that recognizes crystal surfaces. So we isolated antibodies that interacted specifically with Addadi: During and immediately after my PhD, I cholesterol crystals.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 8,450,271 B2 Shah Et Al
    US008450271B2 (12) United States Patent (10) Patent N0.: US 8,450,271 B2 Shah et al. (45) Date of Patent: May 28, 2013 (54) PEPTIDE-BASED SCAFFOLDS FOR 6,270,765 B1 8/2001 Deo et a1. CARTILAGE REGENERATION AND 6,309,862 B1 10/2001 Jarekrans et a1. METHODS FOR THEIR USE 6,391,297 B1 5/2002 Halvorsen 6,444,723 B1 9/2002 Kline 6,458,924 B2 10/2002 Knudsen et a1. (75) Inventors: Ramille N. Shah, Chicago, IL (US); 6,473,730 B1 10/2002 McKeown et al. Nirav A. Shah, Chicago, IL (US); 6,548,048 B1 4/2003 Cuthbertson et al. Samuel I. Stupp, Chicago, IL (US) 6,548,630 B1 4/2003 Zhang et a1. 6,562,619 B1 5/2003 Gearhart et a1. 6,800,481 B1 10/2004 Holmes et a1. (73) Assignee: Northwestern University, Evanston, IL 6,855,329 B1 2/2005 Shakesheff et a1. (Us) 6,890,654 B2 5/2005 Stupp et a1. 7,371,719 B2 5/2008 Stupp et a1. ( * ) Notice: Subject to any disclaimer, the term of this 7,390,526 B2 6/2008 Stupp et a1. patent is extended or adjusted under 35 7,452,679 B2 11/2008 Stupp et a1. 7,491,690 B2 2/2009 Stupp et a1. U.S.C. 154(b) by 281 days. 7,534,761 B1 5/2009 Stupp et a1. 7,544,661 B2 6/2009 Stupp et a1. (21) App1.No.: 12/759,683 7,554,021 B2 6/2009 Stupp et a1. 7,683,025 B2 3/2010 Stupp et a1.
    [Show full text]
  • Debunking Evolution: Problems Between the Theory and Reality; the False Science of Evolution
    Debunking Evolution: problems between the theory and reality; the false science of evolution "Evolution" mixes two things together, one real, one imaginary. People are shown the real part, which makes them ready to believe the imaginary part. That is how the idea of biological evolution has spread since 1859. Variation (microevolution) is the real part. The types of bird beaks, the colors of moths, leg sizes, etc. are variation. Each type and length of beak a finch can have is already in the gene pool and adaptive mechanisms of finches. Creationists have always agreed that there is variation within species. What evolutionists do not want you to know is that there are strict limits to variation that are never crossed, something every breeder of animals or plants is aware of. Whenever variation is pushed to extremes by selective breeding (to get the most milk from cows, sugar from beets, bristles on fruit flies, or any other characteristic), the line becomes sterile and dies out. And as one characteristic increases, others diminish. But evolutionists want you to believe that changes continue, merging gradually into new kinds of creatures. This is where the imaginary part of the theory of evolution comes in. It says that new information is added to the gene pool by mutation and natural selection to create frogs from fish, reptiles from frogs, and mammals from reptiles, to name a few. Just to be clear, evolution theory puts no limit on what mutation/natural selection can invent, saying that everything in nature was invented by it – everything:
    [Show full text]