Insights Into Animal and Plant Lectins with Antimicrobial Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Lectins: Targeting Programmed Cell Death Pathways As Antitumor Agents
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/51529797 Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol ARTICLE in THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY · JULY 2011 Impact Factor: 4.05 · DOI: 10.1016/j.biocel.2011.07.004 · Source: PubMed CITATIONS READS 56 232 6 AUTHORS, INCLUDING: Chengcheng Zhou Shun Yao Sichuan University Shanghai Institutes for Biological Sciences 2 PUBLICATIONS 61 CITATIONS 6 PUBLICATIONS 82 CITATIONS SEE PROFILE SEE PROFILE Available from: Chengcheng Zhou Retrieved on: 26 November 2015 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy The International Journal of Biochemistry & Cell Biology 43 (2011) 1442–1449 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology jo -
Laboratorium Benaming
CAT Critically Appraised Topic Title: Primary Immunodeficiencies: towards a rational testing approach Author: Sien Ombelet Supervisor: Edith Vermeulen Search/methodology verified by: Edith Vermeulen Date: 23/05/2021 CLINICAL BOTTOM LINE Primary immunodeficiencies (PID) in children are rare, but early diagnosis is important for appropriate treatment and favorable outcomes. The threshold for thinking of PID should therefore be low, and clinical alarm signs have been well-defined. However, the best strategy for laboratory testing once a PID is clinically suspected, is unclear. In Imelda hospital, the most commonly ordered laboratory tests for suspected PID are full blood count, quantification of immunoglobulins (Ig), measurement of IgG2 (an IgG subclass) and flow cytometry for classification of lymphocytes into B-cells, T-cells and CD4/CD8 positive cells. Less frequently, humoral immune responses to pneumococcal vaccination are assessed. However, it is unclear which clinical signs or symptoms prompt the clinicians to order either of these tests, and whether the diagnostic strategy is optimal for prompt diagnosis of PID. For this CAT, we aim to provide the clinician with evidence-based criteria when to suspect PID and the appropriate testing strategy in these cases, based on clinical presentation and prevalence of these disorders, also taking into account other possible diagnoses. Four “testing protocols” were designed, based on literature review and expert recommendations. These protocols consist of first line, second line and third line tests. First line tests are full blood count, quantification of immunoglobulins and, depending on the clinical presentation, flow cytometry to differentiate lymphocytes and tests to exclude or confirm the presence of other conditions. -
Investigation Into the Structures of a Lectin
INVESTIGATION INTO THE STRUCTURES OF A LECTIN FROM TRICHOSANTHES DIOICA AND ONE FROM ERYTHRINA INDICA & BIOPHYSICAL CHARACTERIZATION OF ARACEAE LECTINS FROM SAUROMATUM GUTTATUM AND ARISAEMA TORTUOSUM THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY BY POORVA DHARKAR DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE 411 008 INDIA April 2009 CERTIFICATE This is to certify that the work incorporated in the thesis entitled “Investigation into the structures of a lectin from Trichosanthes dioica and one from Erythrina indica & Biophysical characterization of araceae lectins from Sauromatum guttatum and Arisaema tortuosum.” submitted by Ms. Poorva Dharkar was carried out under my supervision. The material obtained from other sources has been duly acknowledged in the thesis. Date Dr. C. G. Suresh (Research Supervisor) Scientist Division of Biochemical Sciences National Chemical Laboratory Pune 411 008 DECLARATION I hereby declare that the thesis entitled “Investigation into the structures of a lectin from Trichosanthes dioica and one from Erythrina indica & Biophysical characterization of araceae lectins from Sauromatum guttatum and Arisaema tortuosum.” submitted by me to the University of Pune for the degree of Doctor of Philosophy is the record of original work carried out by me under the supervision of Dr. C. G. Suresh at the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 and has not formed the basis for the award of any degree, diploma, associateship, fellowship, titles in this or any other University or Institution. I further declare that the material obtained from other sources has been duly acknowledged in the thesis. Poorva Dharkar Date Division of Biochemical Sciences National Chemical Laboratory Pune 411008 Dedicated to……. -
The Role of Weak Protein-Protein Interactions in Multivalent Lectin-Carbohydrate Binding: Crystal Structure of Cross-Linked FRIL
doi:10.1006/jmbi.2000.3785 available online at http://www.idealibrary.com on J. Mol. Biol. (2000) 299, 875±883 COMMUNICATION The Role of Weak Protein-Protein Interactions in Multivalent Lectin-Carbohydrate Binding: Crystal Structure of Cross-linked FRIL Thomas W. Hamelryck1*, Jeffrey G. Moore2, Maarten J. Chrispeels3, Remy Loris1 and Lode Wyns1 1Laboratorium voor Binding of multivalent glycoconjugates by lectins often leads to the for- Ultrastructuur, Vlaams mation of cross-linked complexes. Type I cross-links, which are Interuniversitair Instituut voor one-dimensional, are formed by a divalent lectin and a divalent glycocon- Biotechnologie, Vrije jugate. Type II cross-links, which are two or three-dimensional, occur Universiteit Brussel when a lectin or glycoconjugate has a valence greater than two. Type II Paardenstraat 65, B-1640, Sint- complexes are a source of additional speci®city, since homogeneous type Genesius-Rode, Belgium II complexes are formed in the presence of mixtures of lectins and glyco- conjugates. This additional speci®city is thought to become important 2Phylogix LLC, P.O. Box 6790 when a lectin interacts with clusters of glycoconjugates, e.g. as is present 69 U.S. Route One on the cell surface. The cryst1al structure of the Glc/Man binding legume Scarborough, ME 04074, USA lectin FRIL in complex with a trisaccharide provides a molecular snap- 3Department of Biology shot of how weak protein-protein interactions, which are not observed in University of California, San solution, can become important when a cross-linked complex is formed. Diego, 9500 Gilman Drive, La In solution, FRIL is a divalent dimer, but in the crystal FRIL forms a tet- Jolla, CA 92093-0116, USA ramer, which allows for the formation of an intricate type II cross-linked complex with the divalent trisaccharide. -
HEG1 Is a Novel Mucin-Like Membrane Protein That Serves As a Diagnostic and Therapeutic Target for Malignant Mesothelioma
www.nature.com/scientificreports OPEN HEG1 is a novel mucin-like membrane protein that serves as a diagnostic and therapeutic target Received: 28 October 2016 Accepted: 02 March 2017 for malignant mesothelioma Published: 31 March 2017 Shoutaro Tsuji1,*,, Kota Washimi1,2,*, Taihei Kageyama1, Makiko Yamashita1, Mitsuyo Yoshihara1, Rieko Matsuura1, Tomoyuki Yokose2, Yoichi Kameda3, Hiroyuki Hayashi4, Takao Morohoshi5, Yukio Tsuura6, Toshikazu Yusa7, Takashi Sato8, Akira Togayachi8, Hisashi Narimatsu8, Toshinori Nagasaki1,9, Kotaro Nakamoto1,9, Yasuhiro Moriwaki9, Hidemi Misawa9, Kenzo Hiroshima10, Yohei Miyagi1 & Kohzoh Imai1,11 The absence of highly specific markers for malignant mesothelioma (MM) has served an obstacle for its diagnosis and development of molecular-targeting therapy against MM. Here, we show that a novel mucin-like membrane protein, sialylated protein HEG homolog 1 (HEG1), is a highly specific marker for MM. A monoclonal antibody against sialylated HEG1, SKM9-2, can detect even sarcomatoid and desmoplastic MM. The specificity and sensitivity of SKM9-2 to MM reached 99% and 92%, respectively; this antibody did not react with normal tissues. This accurate discrimination by SKM9-2 was due to the recognition of a sialylated O-linked glycan with HEG1 peptide. We also found that gene silencing of HEG1 significantly suppressed the survival and proliferation of mesothelioma cells; this result suggests that HEG1 may be a worthwhile target for function-inhibition drugs. Taken together, our results indicate that sialylated HEG1 may be useful as a diagnostic and therapeutic target for MM. Malignant mesothelioma (MM) is a fatal tumor caused by past exposure to asbestos1. MM victims number ~3,000, 5,000, and 1,300 per year in the United States, Western Europe, and Japan, respectively1,2. -
Publications Imberty
Publications Dr Anne Imberty CERMAV-CNRS Databases for glycobiology 3D-lectin Database: our Internet database of 3 structures of lectins, and the carbohydrate energy parameters PIM for the TRIPOS force field 2021 346 - Kuhaudomlar S., Siebs E., Shanina E., Topin J., Joachim I., da Silva Figueiredo Celestino Gomes P., Varrot A., Rognan D., Rademacher C., Imberty A.* & Titz A* (in press) Non-carbohydrate glycomimetics as inhibitors of calcium(II)-binding lectins. Angew. Chem. in press, (doi: 10.1002/anie.202013217) [OpenAccess] [hal-03083693] 345 - Gajdos L., Forsyth V.T., Blakeley M.P., Haertlein,M., Imberty A.*, Samain E.*, & Devos J.M.* (2021) Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 31, 151-158 (doi: 10.1093/glycob/cwaa059) [OpenAccess] [hal-02911649] 344 - Bonnardel F., Mariethoz J., Pérez S., Imberty A.* & Lisacek F.* (2021) LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Ac. Res. 49, D1548-D1554 (doi: 10.1093/nar/gkaa1019) [OpenAccess] [hal- 03000205] 2020 343 - Suhaudomlarp S., Cerofolini L., Santarsia S., Gillon E., Denis M., Fallarini S., Giuntini S.,Valori C., Lombardi G., Fragai M*, Imberty A.*, Dondoni A. & Nativi C.* (2020) Fucosylated ubiquitin and orthogonally glycosylated mutant A28C: Conceptually new ligands for Burkholderia ambifaria lectin (BambL). Biomolecules 10, 1660 (doi: 10.1039/d0sc03741a) [OpenAccess] [hal-02995036] 342 - Pérez S., Bonnardel F., Lisacek F., Imberty A., Ricard-Blum S. & Makshakova O. (2020) GAG- DB, the new interface of the three-dimensional landscape of glycosaminoglycans. Biomolecules 10, 1660 (doi: 10.3390/biom10121660) [OpenAccess] [hal-03083684] 341 - Zahorska E., Kuhaudomlarp S., Minervini S., Yousaf S., Lepsik M., Kinsinger T., Hirsch A.K.H., Imberty A &. -
Chapter 1 Introduction
Chapter 1 CHAPTER 1 INTRODUCTION Chapter 1 1.1 Lectins: an overview Lectins are proteins of non-immune, non-enzymatic origin which bind to carbohydrates specifically and reversibly and without modifying them (Lis and Sharon, 1998). They are di or polyvalent in nature and therefore when they interact with cells like erythrocytes, they will not only combine with the sugars on their surfaces but will also cause cross-linking of the cells and their subsequent precipitation, a phenomenon referred to as cell agglutination. The hemagglutinating, activity of lectins is a major attribute and is used routinely for their identification and characterization. Lectins also form cross-links between polysaccharide or glycoprotein molecules in solution and induce their precipitation. Both the agglutination and precipitation reactions of lectins are inhibited by the sugar ligands for which the lectins are specific (Lis and Sharon, 1998). Lectins are ubiquitously present across different life forms and are involved in various biological processes such as cell–cell communication, host–pathogen interaction, cancer metastasis, embryogenesis, tissue development and mitogenic stimulation glycoprotein synthesis (Lis et al., 1998; Wragg et al ., 1999; Vijayan et al ., 1999; Loris et al ., 2002). They are being explored intensely due to the fact that they act as recognition determinants in diverse biological processes like clearance of glycoproteins from the circulatory system, control of intracellular traffic of glycoproteins, adhesion of infectious agents to host cells, recruitment of leukocytes to inflammatory sites, as well as cell interactions in the immune system, malignancy, and metastasis. Investigation of lectins and their role in cell recognition, as well as the application of these proteins for the study of carbohydrates in solution and on cell surfaces, are making marked contributions to the advancement of glycobiology. -
Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre, Yves Bourne, Els Van Damme, Pierre Rougé
Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre, Yves Bourne, Els van Damme, Pierre Rougé To cite this version: Annick Barre, Yves Bourne, Els van Damme, Pierre Rougé. Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. International Journal of Molecular Sciences, MDPI, 2019, 20 (2), pp.254. 10.3390/ijms20020254. hal-02388775 HAL Id: hal-02388775 https://hal-amu.archives-ouvertes.fr/hal-02388775 Submitted on 21 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Review Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre 1, Yves Bourne 2, Els J. M. Van Damme 3 and Pierre Rougé 1,* 1 UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; [email protected] 2 Centre National -
Structure-Function and Application of Plant Lectins in Disease Biology and Immunity T
Food and Chemical Toxicology 134 (2019) 110827 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Structure-function and application of plant lectins in disease biology and immunity T Abtar Mishraa,1, Assirbad Behuraa,1, Shradha Mawatwala, Ashish Kumara, Lincoln Naika, Subhashree Subhasmita Mohantya, Debraj Mannaa, Puja Dokaniaa, Amit Mishrab, ∗ ∗∗ Samir K. Patrac, ,1, Rohan Dhimana, ,1 a Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India b Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India c Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India ARTICLE INFO ABSTRACT Keywords: Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form re- Lectins versible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, ani- Microbes mals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to Antimicrobial action the unique carbohydrate recognition property, lectins have been extensively used in many biological functions Immune responses that make use of protein-carbohydrate recognition like detection, isolation and characterization of glyco- conjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including anti- microbial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. -
The Use of in Vitro Systems for Evaluating Immunotoxicity: the Report and Recommendations of an ECVAM Workshop
Journal of Immunotoxicology ISSN: 1547-691X (Print) 1547-6901 (Online) Journal homepage: https://www.tandfonline.com/loi/iimt20 The Use of In Vitro Systems for Evaluating Immunotoxicity: The Report and Recommendations of an ECVAM Workshop Alessandra Gennari, Masarin Ban, Armin Braun, Silvia Casati, Emanuela Corsini, Jaroslaw Dastych, Jacques Descotes, Thomas Hartung, Robert Hooghe-Peters, Robert House, Marc Pallardy, Raymond Pieters, Lynnda Reid, Helen Tryphonas, Eric Tschirhart, Helga Tuschl, Rob Vandebriel & Laura Gribaldo To cite this article: Alessandra Gennari, Masarin Ban, Armin Braun, Silvia Casati, Emanuela Corsini, Jaroslaw Dastych, Jacques Descotes, Thomas Hartung, Robert Hooghe-Peters, Robert House, Marc Pallardy, Raymond Pieters, Lynnda Reid, Helen Tryphonas, Eric Tschirhart, Helga Tuschl, Rob Vandebriel & Laura Gribaldo (2005) The Use of InVitro Systems for Evaluating Immunotoxicity: The Report and Recommendations of an ECVAM Workshop, Journal of Immunotoxicology, 2:2, 61-83, DOI: 10.1080/15476910590965832 To link to this article: https://doi.org/10.1080/15476910590965832 Published online: 09 Oct 2008. Submit your article to this journal Article views: 798 View related articles Citing articles: 34 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=iimt20 Journal of Immunotoxicology, 2:61–83, 2005 Copyright c Taylor & Francis Inc. ISSN: 1547-691X print / 1547-6901 online DOI: 10.1080/15476910590965832 The Use of In Vitro Systems for -
Fingerprinting Apoptotic Cell Surfaces
Fingerprinting Apoptotic Cell Surfaces: Alterations of Glycocalyx and Membrane Composition Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Sandra Franz aus Chemnitz Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 13.04.2007 Vorsitzender der Prüfungskommision: Prof. Dr. E. Bänsch Erstberichterstatter: Prof. Dr. L. Nitschke Zweitberichterstatter: Prof. Dr. Dr. h.c. J. R. Kalden Drittberichterstatter: Prof. Dr. W. Jahnen-Dechent Danksagung Herrn Prof. Dr. Dr. h.c. J. R. Kalden möchte ich herzlich für die Betreuung der Arbeit und die Bereitstellung eines Arbeitsplatzes am Institut für klinische Immunologie und Rheumatologie danken. Ich erhielt vielseitige Einblicke in diese spannende Wissen- schaftsgebiet. Ebenso möchte ich mich bei Herrn Prof. Dr. G. Schett für die Möglichkeit bedanken, meine Dissertation am Institut für Klinische Immunologie und Rheumatologie fortzuführen und erfolgreich zu beenden. Herzlichen Dank auch an Herrn Prof. Dr. L. Nitschke für die Bereitschaft meine Arbeit von Seiten der Naturwissenschaftlichen Fakultät II zu vertreten. Besonders bedanken möchte ich mich bei Herrn Prof. Dr. Martin Herrmann für die Bereitstellung des sehr interessanten Themas, seine intensive Unterstützung, die vielen Anregungen und zahlreichen sehr ergiebigen Diskussionen. Ich durfte mich stets in allen Themenbereichen seiner Arbeitsgruppe einbringen und erhielt die Möglichkeit auf zahlreichen Kongressen meine Ergebnisse zu präsentieren. Ebenfalls herzlich danken möchte ich Herrn Prof. Dr. W. Jahnen-Dechent für die Übernahme des Drittgutachtens. Mein Dank gilt auch Herrn Dr. R. E. Voll, Herrn Prof. Dr. H.-M. Jäck und Herrn Prof. Dr. L. Nitschke für die guten Kooperationen, die zahlreichen wissenschaftlichen Diskussionen und für das stete Interesse am Verlauf meiner Arbeit. -
Antimicrobial Activity of Lectins from Plants
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 134,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 8 Antimicrobial Activity of Lectins from Plants Aphichart Karnchanatat The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand 1. Introduction There are at least three reasons for the need in finding out new alternative antimicrobial substances from natural sources. The first reason is that people nowadays concern about toxic of synthetic substances including daily contact chemicals or even drugs used in medical or healthcare purposes (Hafidh et al., 2009). Any synthetic drugs were avoided in order to keep physiological cleans as belief. Thus, natural substances were used increasingly instead as well as any substances used for antimicrobial purposes. The second reason is that new alternative drugs are human hope for better fighting with existed diseases and pathogens. They may replace currently used drugs in points of more efficiency, more abundant, lower side-effect or safer or even lower production cost. It is fact that most alive organisms should have some mechanisms or substances fight with all time contacting pathogens so that they can be survived in nature.