Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi Annick Barre, Yves Bourne, Els Van Damme, Pierre Rougé
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
Plant Lectins: Targeting Programmed Cell Death Pathways As Antitumor Agents
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/51529797 Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol ARTICLE in THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY · JULY 2011 Impact Factor: 4.05 · DOI: 10.1016/j.biocel.2011.07.004 · Source: PubMed CITATIONS READS 56 232 6 AUTHORS, INCLUDING: Chengcheng Zhou Shun Yao Sichuan University Shanghai Institutes for Biological Sciences 2 PUBLICATIONS 61 CITATIONS 6 PUBLICATIONS 82 CITATIONS SEE PROFILE SEE PROFILE Available from: Chengcheng Zhou Retrieved on: 26 November 2015 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy The International Journal of Biochemistry & Cell Biology 43 (2011) 1442–1449 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology jo -
Investigation Into the Structures of a Lectin
INVESTIGATION INTO THE STRUCTURES OF A LECTIN FROM TRICHOSANTHES DIOICA AND ONE FROM ERYTHRINA INDICA & BIOPHYSICAL CHARACTERIZATION OF ARACEAE LECTINS FROM SAUROMATUM GUTTATUM AND ARISAEMA TORTUOSUM THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY BY POORVA DHARKAR DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE 411 008 INDIA April 2009 CERTIFICATE This is to certify that the work incorporated in the thesis entitled “Investigation into the structures of a lectin from Trichosanthes dioica and one from Erythrina indica & Biophysical characterization of araceae lectins from Sauromatum guttatum and Arisaema tortuosum.” submitted by Ms. Poorva Dharkar was carried out under my supervision. The material obtained from other sources has been duly acknowledged in the thesis. Date Dr. C. G. Suresh (Research Supervisor) Scientist Division of Biochemical Sciences National Chemical Laboratory Pune 411 008 DECLARATION I hereby declare that the thesis entitled “Investigation into the structures of a lectin from Trichosanthes dioica and one from Erythrina indica & Biophysical characterization of araceae lectins from Sauromatum guttatum and Arisaema tortuosum.” submitted by me to the University of Pune for the degree of Doctor of Philosophy is the record of original work carried out by me under the supervision of Dr. C. G. Suresh at the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 and has not formed the basis for the award of any degree, diploma, associateship, fellowship, titles in this or any other University or Institution. I further declare that the material obtained from other sources has been duly acknowledged in the thesis. Poorva Dharkar Date Division of Biochemical Sciences National Chemical Laboratory Pune 411008 Dedicated to……. -
The Bean Bag
The Bean Bag A newsletter to promote communication among research scientists concerned with the systematics of the Leguminosae/Fabaceae Issue 62, December 2015 CONTENT Page Letter from the Editor ............................................................................................. 1 In Memory of Charles Robert (Bob) Gunn .............................................................. 2 Reports of 2015 Happenings ................................................................................... 3 A Look into 2016 ..................................................................................................... 5 Legume Shots of the Year ....................................................................................... 6 Legume Bibliography under the Spotlight .............................................................. 7 Publication News from the World of Legume Systematics .................................... 7 LETTER FROM THE EDITOR Dear Bean Bag Fellow This has been a year of many happenings in the legume community as you can appreciate in this issue; starting with organizational changes in the Bean Bag, continuing with sad news from the US where one of the most renowned legume fellows passed away later this year, moving to miscellaneous communications from all corners of the World, and concluding with the traditional list of legume bibliography. Indeed the Bean Bag has undergone some organizational changes. As the new editor, first of all, I would like to thank Dr. Lulu Rico and Dr. Gwilym Lewis very much for kindly -
Occurrence of Nitrogen-Fixing Cyanobacteria During Different Stages of Paddy Cultivation
Bangladesh J. Plant Taxon. 18(1): 73-76, 2011 (June) ` - Short communication © 2011 Bangladesh Association of Plant Taxonomists OCCURRENCE OF NITROGEN-FIXING CYANOBACTERIA DURING DIFFERENT STAGES OF PADDY CULTIVATION * KAUSHAL KISHORE CHOUDHARY Department of Botany, B.R.A. Bihar University, Muzaffarpur-842001, Bihar, India Keywords: Cyanobacteria; Diversity; Nitrogen-fixing; Rice fields; North Bihar. Rapid decline in soil fertility and productivity due to excessive application of chemical fertilizer particularly nitrogen and its increasing cost has induced to develop alternate biological sources of nitrogenous fertilizers (Boussiba, 1991). Biological fertilizers maintain the nitrogen status of the soils and helps in optimum crop production to meet the demand of increasing human populations while maintaining the agricultural practices sustainable. With establishment of agronomic potential of cyanobacteria (Singh, 1950), these photosynthetic prokaryotes were applied and studied for enrichment of different living ecosystems with nitrogenous compounds. Cyanobacteria are endowed with a specialized structure ‘heterocyst’ with ‘nitrogenase complex’ capable of converting unavailable sources of molecular nitrogen into nitrogenous compounds (Ernst et al., 1992). The ability of cyanobacteria to fix atmospheric nitrogen is increasing concern worldwide to exploit this tiny living system for nitrogenous fertilizers for sustainable agriculture practices. Advances in cyanobacteria have revealed their significant contribution in promoting the fertility of the soil and water including marine by adding nitrogen and phosphorus. Cyanobacteria contribute phosphorus to the soil by mobilizing the insoluble organic phosphates present in the soil with enzyme ‘phosphatses’ (Whitton et al., 1991). Moreover, cyanobacteria enhance the water holding capacity by adding polysaccharidic material to the soil (Richert et al., 2005) that increases the soil aggregation property. -
Antiviral Cyanometabolites—A Review
biomolecules Review Antiviral Cyanometabolites—A Review Hanna Mazur-Marzec 1,*, Marta Cegłowska 2 , Robert Konkel 1 and Krzysztof Pyr´c 3 1 Division of Marine Biotechnology, University of Gda´nsk,Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; [email protected] 2 Institute of Oceanology, Polish Academy of Science, Powsta´nców Warszawy 55, PL-81-712 Sopot, Poland; [email protected] 3 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30-387 Krakow, Poland; [email protected] * Correspondence: [email protected] Abstract: Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystis viridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. -
The Role of Weak Protein-Protein Interactions in Multivalent Lectin-Carbohydrate Binding: Crystal Structure of Cross-Linked FRIL
doi:10.1006/jmbi.2000.3785 available online at http://www.idealibrary.com on J. Mol. Biol. (2000) 299, 875±883 COMMUNICATION The Role of Weak Protein-Protein Interactions in Multivalent Lectin-Carbohydrate Binding: Crystal Structure of Cross-linked FRIL Thomas W. Hamelryck1*, Jeffrey G. Moore2, Maarten J. Chrispeels3, Remy Loris1 and Lode Wyns1 1Laboratorium voor Binding of multivalent glycoconjugates by lectins often leads to the for- Ultrastructuur, Vlaams mation of cross-linked complexes. Type I cross-links, which are Interuniversitair Instituut voor one-dimensional, are formed by a divalent lectin and a divalent glycocon- Biotechnologie, Vrije jugate. Type II cross-links, which are two or three-dimensional, occur Universiteit Brussel when a lectin or glycoconjugate has a valence greater than two. Type II Paardenstraat 65, B-1640, Sint- complexes are a source of additional speci®city, since homogeneous type Genesius-Rode, Belgium II complexes are formed in the presence of mixtures of lectins and glyco- conjugates. This additional speci®city is thought to become important 2Phylogix LLC, P.O. Box 6790 when a lectin interacts with clusters of glycoconjugates, e.g. as is present 69 U.S. Route One on the cell surface. The cryst1al structure of the Glc/Man binding legume Scarborough, ME 04074, USA lectin FRIL in complex with a trisaccharide provides a molecular snap- 3Department of Biology shot of how weak protein-protein interactions, which are not observed in University of California, San solution, can become important when a cross-linked complex is formed. Diego, 9500 Gilman Drive, La In solution, FRIL is a divalent dimer, but in the crystal FRIL forms a tet- Jolla, CA 92093-0116, USA ramer, which allows for the formation of an intricate type II cross-linked complex with the divalent trisaccharide. -
GLYCO 21 XXI International Symposium on Glycoconjugates
GLYCO 21 XXI International Symposium on Glycoconjugates Abstracts August 21-26, 2011 Vienna, Austria Glycoconj J (2011) 28: 197–36 9 Organising Committee Erika Staudacher (Austria) Leopold März (Austria) Günter Allmaier (Austria) Lothar Brecker (Austria) Josef Glössl (Austria) Hanspeter Kählig (Austria) Paul Kosma (Austria) Lukas Mach (Austria) Paul Messner (Austria) Walther Schmid (Austria) Igor Tvaroška (Slovakia) Reinhard Vlasak (Austria) Iain Wilson (Austria) Scientifi c Program Committee Iain Wilson (Austria) Paul Messner (Austria) Günter Allmaier (Austria) Reginald Bittner (Austria) Paul Kosma (Austria) Eva Stöger (Austria) Graham Warren (Austria) John Hanover (USA; nominated by the Society for Glycobiology) Kelly ten Hagen (USA; nominated by the Society for Glycobiology) supported in abstract selection by Michael Duchêne (Austria) Catherine Merry (UK) Tadashi Suzuki (Japan) Abstracts of the 21st International Symposium on Glycoconjugates The International Glycoconjugate Organisation Gerald W. Hart, President Leopold März, President-elect Paul Gleeson, Immediate Past-president Sandro Sonnino, Secretary Thierry Hennet, Treasurer National Representatives Pedro Bonay (Spain) to replace Angelo Reglero Nicolai Bovin (Russia) Jin Won Cho (Korea) Henrik Clausen (Denmark) Anne Dell (UK) Jukka Finne (Finland) Paul Gleeson (Australia) Jianxin Gu (China) Gerald Hart (USA) Thierry Hennet (Switzerland) Jim Jamieson (Canada) Gordan Lauc (Croatia) Hakon Leffl er (Sweden) Jean-Claude Michalski (France) Werner Reutter (Germany) Sandro Sonnino (Italy) Avadhesha Surolia (India) Ken Kitajima (Japan) Maciej Ugorski (Poland) Johannes F.G. Vliegenthart (The Netherlands) Iain Wilson (Austria) to replace Leopold März Albert M. Wu (Taiwan) Lode Wyns (Belgium) Yehiel Zick (Israel) Glycoconj J (2011) 28: 197–369 Past Presidents Eugene. A. Davidson (USA) Alan B. Foster (UK) Paul Gleeson (Australia) Mary Catherine Glick (USA) Colin Hughes (UK) Roger W. -
Publications Imberty
Publications Dr Anne Imberty CERMAV-CNRS Databases for glycobiology 3D-lectin Database: our Internet database of 3 structures of lectins, and the carbohydrate energy parameters PIM for the TRIPOS force field 2021 346 - Kuhaudomlar S., Siebs E., Shanina E., Topin J., Joachim I., da Silva Figueiredo Celestino Gomes P., Varrot A., Rognan D., Rademacher C., Imberty A.* & Titz A* (in press) Non-carbohydrate glycomimetics as inhibitors of calcium(II)-binding lectins. Angew. Chem. in press, (doi: 10.1002/anie.202013217) [OpenAccess] [hal-03083693] 345 - Gajdos L., Forsyth V.T., Blakeley M.P., Haertlein,M., Imberty A.*, Samain E.*, & Devos J.M.* (2021) Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 31, 151-158 (doi: 10.1093/glycob/cwaa059) [OpenAccess] [hal-02911649] 344 - Bonnardel F., Mariethoz J., Pérez S., Imberty A.* & Lisacek F.* (2021) LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Ac. Res. 49, D1548-D1554 (doi: 10.1093/nar/gkaa1019) [OpenAccess] [hal- 03000205] 2020 343 - Suhaudomlarp S., Cerofolini L., Santarsia S., Gillon E., Denis M., Fallarini S., Giuntini S.,Valori C., Lombardi G., Fragai M*, Imberty A.*, Dondoni A. & Nativi C.* (2020) Fucosylated ubiquitin and orthogonally glycosylated mutant A28C: Conceptually new ligands for Burkholderia ambifaria lectin (BambL). Biomolecules 10, 1660 (doi: 10.1039/d0sc03741a) [OpenAccess] [hal-02995036] 342 - Pérez S., Bonnardel F., Lisacek F., Imberty A., Ricard-Blum S. & Makshakova O. (2020) GAG- DB, the new interface of the three-dimensional landscape of glycosaminoglycans. Biomolecules 10, 1660 (doi: 10.3390/biom10121660) [OpenAccess] [hal-03083684] 341 - Zahorska E., Kuhaudomlarp S., Minervini S., Yousaf S., Lepsik M., Kinsinger T., Hirsch A.K.H., Imberty A &. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Food Microbiology Characterization of Plant Lectins for Their Ability To
Food Microbiology 82 (2019) 231–239 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Characterization of plant lectins for their ability to isolate Mycobacterium T avium subsp. paratuberculosis from milk Bernhard F. Hobmaiera, Karina Lutterberga, Kristina J.H. Kleinworta, Ricarda Mayerb, Sieglinde Hirmera, Barbara Amanna, Christina Hölzelb,c, Erwin P. Märtlbauerb, ∗ Cornelia A. Deega, a Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstraße 13, D-80539, Munich, Germany b Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, Schönleutnerstr 8, D-85764, Oberschleißheim, Germany c Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, CAU Kiel, Hermann-Rodewald-Str. 6, 24098 Kiel, Germany 1. Introduction combined with PCR (phage-PCR). The zoonotic potential of MAP is still under discussion (Kuenstner et al., 2017). It could potentially play a Mycobacterium avium subsp. paratuberculosis is the causative agent of role in inflammatory bowel diseases, like Crohn's disease and ulcerative paratuberculosis or Johne's disease, a chronic granulomatous enteritis colitis (Timms et al., 2016). Additionally, MAP infections could be in- in cattle and small ruminants, causing emaciation, decreased milk volved in the pathogenesis of autoimmune diseases like type 1 diabetes, production and, in cattle, severe diarrhea (Arsenault et al., 2014). After multiple sclerosis, rheumatoid arthritis and Hashimoto's thyroiditis infection, ruminants go through a long, asymptomatic subclinical (Garvey, 2018; Waddell et al., 2015). Although the causal link between phase, in which they cannot reliably be determined by standard diag- MAP and these diseases is not proven, the possible association ne- nostic tests (Li et al., 2017). -
Banlec-Egfp Chimera As a Tool for Evaluation of Lectin Binding to High-Mannose Glycans on Microorganisms
biomolecules Article BanLec-eGFP Chimera as a Tool for Evaluation of Lectin Binding to High-Mannose Glycans on Microorganisms Zorana Lopandi´c 1 , Luka Dragaˇcevi´c 2, Dragan Popovi´c 3 , Uros Andjelkovi´c 3,4, Rajna Mini´c 2 and Marija Gavrovi´c-Jankulovi´c 1,* 1 Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; [email protected] 2 Institute of Virology, Vaccines and Sera, 11152 Belgrade, Serbia; [email protected] (L.D.); [email protected] (R.M.) 3 Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; [email protected] (D.P.); [email protected] (U.A.) 4 Department of Biotechnology, University of Rijeka, 5100 Rijeka, Croatia * Correspondence: [email protected]; Tel.: +381-11-3336-661 Abstract: Fluorescently labeled lectins are useful tools for in vivo and in vitro studies of the structure and function of tissues and various pathogens such as viruses, bacteria, and fungi. For the evaluation of high-mannose glycans present on various glycoproteins, a three-dimensional (3D) model of the chimera was designed from the crystal structures of recombinant banana lectin (BanLec, Protein Data Bank entry (PDB): 5EXG) and an enhanced green fluorescent protein (eGFP, PDB 4EUL) by applying molecular modeling and molecular mechanics and expressed in Escherichia coli. BanLec- eGFP, produced as a soluble cytosolic protein of about 42 kDa, revealed β-sheets (41%) as the Citation: Lopandi´c,Z.; Dragaˇcevi´c, predominant secondary structures, with the emission peak maximum detected at 509 nm (excitation L.; Popovi´c,D.; Andjelkovi´c,U.; wavelength 488 nm).