DISSERTAÇÃO NINA VERSÃO FINAL.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

DISSERTAÇÃO NINA VERSÃO FINAL.Pdf UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE GENÉTICA, ECOLOGIA E EVOLUÇÃO PROGRAMA DE PÓS GRADUAÇÃO EM GENÉTICA DISSERTAÇÃO DE MESTRADO Prospecção de bactérias lácticas para uso como probióticos e avaliação do efeito protetor em modelo murino de mucosite intestinal induzida por 5-FU ORIENTADA: Nina Dias Coelho Rocha ORIENTADOR: Prof. Dr. Vasco Ariston de Carvalho Azevedo CO-ORIENTADORA: Dra. Pamela Del Carmen Mancha Agresti BELO HORIZONTE 2020 I Nina Dias Coelho Rocha Prospecção de bactérias lácticas para uso como probióticos e avaliação do efeito protetor em modelo murino de mucosite intestinal induzida por 5-FU Versão final Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Genética da Universidade Federal de Minas Gerais como requisito parcial para obtenção do título de Mestre em Genética. Orientador: Prof. Dr. Vasco Ariston de Carvalho Azevedo Coorientadora: Dra. Pamela Del Carmen Mancha Agresti Belo Horizonte 2020 II III UNIVERSIDADE FEDERAL DE MINAS GERAIS Programa de Pós-Graduação em Genética Instituto de Ciências Biológicas ATA DE DEFESA DE DISSERTAÇÃO / TESE ATA DA DEFESA DE DISSERTAÇÃO Nº 303/2020 Entrada 1º/2019 Nina Dias Coelho Rocha CPF: 134.972.596-08 Às quatorze horas do dia 18 de dezembro de 2020, reunidos remotamente devido a pandemia do novo coronavírus (COVID 19) a Comissão Examinadora de Dissertação, indicada pelo Colegiado do Programa, para julgar, em exame final, o trabalho intitulado: "Prospecção de bactérias lácticas para uso como probióticos e avaliação do efeito protetor em modelo murino de mucosite intestinal induzida por 5- FU", requisito para obtenção do grau de Mestre em Genética. Abrindo a sessão, o Presidente da Comissão, Dr. Vasco Ariston de Carvalho Azevedo, após dar a conhecer aos presentes o teor das Normas Regulamentares do Trabalho Final, passou a palavra à candidata, para apresentação de seu trabalho. Seguiu- se a arguição pelos Examinadores, com a respectiva defesa da candidata. Logo após, a Comissão se reuniu, sem a presença da candidata e do público, para julgamento e expedição de resultado final. Foram atribuídas as seguintes indicações: Prof./Pesq. Instituição CPF Indicação Dr. Vasco Ariston de Carvalho Azevedo UFMG 283.171.225-49 APROVADA Dr. Rodrigo Dias de Oliveira Carvalho UFMG 080.173.536-00 APROVADA Dr. Álvaro Cantini Nunes UFMG 678.159.606-34 APROVADA Dr. Flaviano dos Santos Martins UFMG 043.684.026-00 APROVADA Pelas indicações, a candidata foi considerada: APROVADA O resultado final foi comunicado publicamente à candidata pelo Presidente da Comissão. Nada mais havendo a tratar, o Presidente encerrou a reunião e lavrou a presente ATA, que será assinada por todos os membros participantes da Comissão Examinadora. Belo Horizonte, 18 de dezembro de 2020. IV Dr. Vasco Ariston de Carvalho Azevedo – Orientador Dr. Rodrigo Dias de Oliveira Carvalho Dr. Alvaro Cantini Nunes Dr. Flaviano dos Santos Martins Assinatura dos membros da banca examinadora: Documento assinado eletronicamente por Flaviano dos Santos Martins, Professor do Magistério Superior, em 18/12/2020, às 16:21, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. Documento assinado eletronicamente por Alvaro Cantini Nunes, Membro, em 18/12/2020, às 16:24, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. Documento assinado eletronicamente por Rodrigo Dias de Oliveira Carvalho, Usuário Externo, em 18/12/2020, às 16:26, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. Documento assinado eletronicamente por Vasco Ariston de Carvalho Azevedo, Professor do Magistério Superior, em 18/12/2020, às 17:15, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. A autenticidade deste documento pode ser conferida no site https://sei.ufmg.br/sei/controlador_externo.php? acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0483824 e o código CRC F61F362D. Referência: Processo nº 23072.247734/2020-64 SEI nº 0483824 V UNIVERSIDADE FEDERAL DE MINAS GERAIS Instituto de Ciências Biológicas Programa de Pós-Graduação em Genética FOLHA DE APROVAÇÃO "Prospecção de bactérias lácticas para uso como probióticos e avaliação do efeito protetor em modelo murino de mucosite intestinal induzida por 5-FU" NINA DIAS COELHO ROCHA Dissertação aprovada pela banca examinadora constituída pelos Professores: Prof. Vasco Ariston de Carvalho Azevedo - Orientador UFMG Rodrigo Dias de Oliveira Carvalho UFMG Álvaro Cantini Nunes UFMG Flaviano dos Santos Martins UFMG Belo Horizonte, 18 de dezembro de 2020. Documento assinado eletronicamente por Flaviano dos Santos Martins, Professor do Magistério Superior, em 18/12/2020, às 16:21, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. Documento assinado eletronicamente por Alvaro Cantini Nunes, Membro, em 18/12/2020, às 16:24, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020 Documento assinado eletronicamente por Rodrigo Dias de Oliveira Carvalho, Usuário Externo, em 18/12/2020, às 16:26, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. Documento assinado eletronicamente por Vasco Ariston de Carvalho Azevedo, Professor do Magistério Superior, em 18/12/2020, às 17:15, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020. A autenticidade deste documento pode ser conferida no site https://sei.ufmg.br/sei/controlador_externo.php? acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0483899 e o código CRC CD0CEDC2. Referência: Processo nº 23072.247734/2020-64 SEI nº 0483899 VI Aos meus pais, Levindo e Margarida, que sempre colocaram a minha educação acima de tudo e sempre me deram apoio incondicional na trajetória emocionante da Biologia. VII AGRADECIMENTOS Ao meu pai, Levindo, agradeço pelo conforto que sempre me passa acima de qualquer pessoa e pela paciência de me levar na UFMG para a realização dos experimentos, incluindo sábados e domingos. À minha mãe, Margarida, por todas as orações que me ajudaram a chegar nesse momento e pelo orgulho que tem da “filha cientista". À minha irmã, Milla, pelas orações, pela companhia e por ser exemplo de perseverança e determinação para mim. Às minhas tias, tios, avós e primos que tanto me motivam a seguir com honra e ética na profissão. Aos meus amigos de infância do Sagrado que nunca saíram do meu lado, sempre me dando suporte e ao meu namorado, Diego, que foi companhia fundamental nos dias que mais precisei. Meus sinceros agradecimentos ao Professor Vasco pelo acolhimento, em especial na reta final do mestrado. Obrigada pela confiança e por acreditar no meu trabalho e no meu potencial mesmo em épocas que eu estava desmotivada. A todos do grande grupo do LGCM que me ajudaram ativamente nos experimentos. Ao Luis, meu amigo e confidente, a Vivi, Laísa e ao Tales que foram meus companheiros de caminhada, passando as dificuldades e comemorando as vitórias juntos. Aos ICS que me deram a oportunidade de poder ensinar o que sei e que me ajudaram de uma maneira muito importante na condução dos experimentos. Foram 5 anos neste laboratório e levarei para a vida cada ensinamento. Muito obrigada! Aos meus companheiros felinos: Syd, Lucy e Maria Rita. O ser humano só saberá o que é compaixão quando aprender a olhar todos os seres a sua volta como iguais. Agradeço sim aos animais, que são meu refúgio mental e que me dão as maiores lições de lealdade e de um amor paciente. Dedico grande parte da minha saúde mental a eles. Sendo assim, meu reconhecimento também aos animais que me permitiram realizar este experimento. Todo cientista deve valorizar o impacto que vidas tão pequenas trazem para o conhecimento. Sonho pelo dia em que a pesquisa se refinará a ponto de não precisarmos utilizar destes meios para obtermos resultados aplicáveis. E é isso que me faz lutar a cada dia por uma ciência mais justa para todos. A CAPES agradeço pela concessão da bolsa que permitiu me dedicar integralmente a condução deste trabalho. A UFMG, minha segunda casa e ao Programa de Pós Graduação em Genética. VIII RESUMO Os benefícios exercidos pelos probióticos têm impulsionado uma série de pesquisas em busca de novas linhagens com este potencial. Nesse contexto, este estudo visou identificar e caracterizar 21 novas linhagens provenientes de ambientes diversos baseando-se em testes para avaliação de probiose sugeridos por diretrizes de agências reguladoras para posterior verificação do potencial protetor em modelo murino de mucosite intestinal induzida por 5-fluourouracil (5-FU). A identificação por MALDI-TOF revelou que todas as linhagens pertencem ao grupo das bactérias láticas (BLs), sendo relatados os gêneros Lactobacillus, Lactiplantibacillus, Lacticaseibacillus, Pediococcus e Enterococcus. Foram realizados testes in vitro de segurança por meio da análise da resistência à antibióticos, degradação da mucina e potencial hemolítico e de eficácia e funcionalidade, por meio da avaliação da resistência das linhagens aos sais biliares, tolerância ao pH ácido, produção de substâncias antimicrobianas, adesão e imunoestimulação em células Caco-2. Nenhum destes critérios foram excludentes quanto ao enquadramento das linhagens como probióticos,
Recommended publications
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Comparative Genomics Analysis of Lactobacillus Mucosae from Different Niches
    G C A T T A C G G C A T genes Article Comparative Genomics Analysis of Lactobacillus mucosae from Different Niches Yan Jia 1,2, Bo Yang 1,2,3,* , Paul Ross 3,4, Catherine Stanton 3,5, Hao Zhang 1,2,6,7, Jianxin Zhao 1,2,6 and Wei Chen 1,2,6,8 1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; [email protected] (Y.J.); [email protected] (H.Z.); [email protected] (J.Z.); [email protected] (W.C.) 2 School of Food Science and Technology, Jiangnan University, Wuxi 214122, China 3 International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; [email protected] (P.R.); [email protected] (C.S.) 4 APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland 5 Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland 6 National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China 7 Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China 8 Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China * Correspondence: [email protected]; Tel.: +86-510-591-2155 Received: 5 December 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: The potential probiotic benefits of Lactobacillus mucosae have received increasing attention. To investigate the genetic diversity of L. mucosae, comparative genomic analyses of 93 strains isolated from different niches (human and animal gut, human vagina, etc.) and eight strains of published genomes were conducted.
    [Show full text]
  • Analysis of the Composition of Lactobacilli in Humans
    Note Bioscience Microflora Vol. 29 (1), 47–50, 2010 Analysis of the Composition of Lactobacilli in Humans Katsunori KIMURA1*, Tomoko NISHIO1, Chinami MIZOGUCHi1 and Akiko KOIZUMI1 1Division of Research and Development, Meiji Dairies Corporation, 540 Naruda, Odawara, Kanagawa 250-0862, Japan Received July 19, 2009; Accepted August 31, 2009 We collected fecal samples twice from 8 subjects and obtained 160 isolates of lactobacilli. The isolates were genetically fingerprinted and identified by pulsed-field gel electrophoresis (PFGE) and 16S rDNA sequence analysis, respectively. The numbers of lactobacilli detected in fecal samples varied greatly among the subjects. The isolates were divided into 37 strains by PFGE. No common strain was detected in the feces of different subjects. Except for one subject, at least one strain, unique to each individual, was detected in both fecal samples. The strains detected in both fecal samples were identified as Lactobacillus amylovorus, L. gasseri, L. fermentum, L. delbrueckii, L. crispatus, L. vaginalis and L. ruminis. They may be the indigenous Lactobacillus species in Japanese adults. Key words: lactobacilli; Lactobacillus; composition; identification; PFGE Members of the genus Lactobacillus are gram-positive was used to make a fecal homogenate in 9 ml of organisms that belong to the general category of lactic Trypticase soy broth without dextrose (BBL, acid bacteria. They inhabit a wide variety of habitats, Cockeysville, MD). A dilution series (10–1 to 10–7) was including foods, plants and the gastrointestinal tracts of made in the same medium, and 100-l aliquots of each humans and animals. Some Lactobacillus strains are dilution were spread on Rogosa SL agar (Difco, Sparks, used in the manufacture of fermented foods.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • Lactobacillus Mucosae and Bifidobacterium Longum
    J. Microbiol. Biotechnol. (2019), 29(9), 1369–1374 https://doi.org/10.4014/jmb.1907.07044 Research Article Review jmb Lactobacillus mucosae and Bifidobacterium longum Synergistically Alleviate Immobilization Stress-Induced Anxiety/Depression in Mice by Suppressing Gut Dysbiosis S Sang-Kap Han and Dong-Hyun Kim* Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea Received: July 21, 2019 Revised: August 13, 2019 We isolated Lactobacillus mucosae NK41 and Bifidobacterium longum NK46 from human feces, Accepted: August 15, 2019 which induced BDNF expression in corticosterone-stimulated SH-SY5Y cells, and examined First published online their anti-depressive effects in mice. NK41, NK46, and their (1:1) mixture significantly August 21, 2019 mitigated immobilization stress (IS)-induced anxiety-like/depressive behaviors, hippocampal + *Corresponding author NF-κB activation, BDNF expression, Iba1 cell population, and blood corticosterone, TNF-α, IL- Phone: +82-2-961-0374; 6, and lipopolysaccharide levels. Furthermore, they inhibited colitis marker NF-κB activation, Fax: +82-2-957-5030; E-mail: [email protected] and TNF-α expression in mice with IS-induced anxiety/depression. They additionally suppressed gut Proteobacteria and Bacteroidetes populations and bacterial lipopolysaccharide S upplementary data for this production. These findings suggest that NK41 and NK46 may alleviate anxiety/depression paper are available on-line only at http://jmb.or.kr. and colitis by suppressing gut dysbiosis. pISSN 1017-7825, eISSN 1738-8872 Keywords: Bifidobacterium longum, Lactobacillus mucosae, depression, anxiety, gut microbiota Copyright© 2019 by The Korean Society for Microbiology and Biotechnology Anxiety disorders are the most commonly reported bifidobacteria and lactobacilli alleviated psychiatric mental disorders [1].
    [Show full text]
  • Lactobacillus Fermentum DSM 20052 Katelyn Brandt1,2, Matthew A
    Brandt et al. BMC Genomics (2020) 21:328 https://doi.org/10.1186/s12864-020-6740-8 RESEARCH ARTICLE Open Access Genomic characterization of Lactobacillus fermentum DSM 20052 Katelyn Brandt1,2, Matthew A. Nethery1,2, Sarah O’Flaherty2 and Rodolphe Barrangou1,2* Abstract Background: Lactobacillus fermentum, a member of the lactic acid bacteria complex, has recently garnered increased attention due to documented antagonistic properties and interest in assessing the probiotic potential of select strains that may provide human health benefits. Here, we genomically characterize L. fermentum using the type strain DSM 20052 as a canonical representative of this species. Results: We determined the polished whole genome sequence of this type strain and compared it to 37 available genome sequences within this species. Results reveal genetic diversity across nine clades, with variable content encompassing mobile genetic elements, CRISPR-Cas immune systems and genomic islands, as well as numerous genome rearrangements. Interestingly, we determined a high frequency of occurrence of diverse Type I, II, and III CRISPR-Cas systems in 72% of the genomes, with a high level of strain hypervariability. Conclusions: These findings provide a basis for the genetic characterization of L. fermentum strains of scientific and commercial interest. Furthermore, our study enables genomic-informed selection of strains with specific traits for commercial product formulation, and establishes a framework for the functional characterization of features of interest. Keywords: Lactobacillus, Fermentum, Comparative genomics, CRISPR Background Lactobacillus are used as probiotics, defined as “live mi- Lactobacillus are low-GC, microaerophilic, Gram- croorganisms which when administered in adequate positive microorganisms that are members of the lactic amounts confer a health benefit on the host” [4, 5].
    [Show full text]
  • Taxonomy of Lactobacilli and Bifidobacteria
    Curr. Issues Intestinal Microbiol. 8: 44–61. Online journal at www.ciim.net Taxonomy of Lactobacilli and Bifdobacteria Giovanna E. Felis and Franco Dellaglio*† of carbohydrates. The genus Bifdobacterium, even Dipartimento Scientifco e Tecnologico, Facoltà di Scienze if traditionally listed among LAB, is only poorly MM. FF. NN., Università degli Studi di Verona, Strada le phylogenetically related to genuine LAB and its species Grazie 15, 37134 Verona, Italy use a metabolic pathway for the degradation of hexoses different from those described for ‘genuine’ LAB. Abstract The interest in what lactobacilli and bifdobacteria are Genera Lactobacillus and Bifdobacterium include a able to do must consider the investigation of who they large number of species and strains exhibiting important are. properties in an applied context, especially in the area of Before reviewing the taxonomy of those two food and probiotics. An updated list of species belonging genera, some basic terms and concepts and preliminary to those two genera, their phylogenetic relationships and considerations concerning bacterial systematics need to other relevant taxonomic information are reviewed in this be introduced: they are required for readers who are not paper. familiar with taxonomy to gain a deep understanding of The conventional nature of taxonomy is explained the diffculties in obtaining a clear taxonomic scheme for and some basic concepts and terms will be presented for the bacteria under analysis. readers not familiar with this important and fast-evolving area,
    [Show full text]
  • The Influence of Probiotic Supplementation on Depressive
    Journal of Clinical Medicine Article The Influence of Probiotic Supplementation on Depressive Symptoms, Inflammation, and Oxidative Stress Parameters and Fecal Microbiota in Patients with Depression Depending on Metabolic Syndrome Comorbidity—PRO-DEMET Randomized Study Protocol Oliwia Gawlik-Kotelnicka 1,* , Anna Skowro´nska 1, Aleksandra Margulska 2, Karolina H. Czarnecka-Chrebelska 3 , Igor Łoniewski 4, Karolina Skonieczna-Zydecka˙ 4 and Dominik Strzelecki 1 1 Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; [email protected] (A.S.); [email protected] (D.S.) 2 Admission Department, Central Teaching Hospital of Medical University of Lodz, 92-216 Lodz, Poland; [email protected] 3 Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; [email protected] 4 Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; Citation: Gawlik-Kotelnicka, O.; [email protected] (I.Ł.); [email protected] (K.S.-Z.)˙ Skowro´nska,A.; Margulska, A.; * Correspondence: [email protected] Czarnecka-Chrebelska, K.H.; Łoniewski, I.; Skonieczna-Zydecka,˙ Abstract: There is a huge need to search for new treatment options and potential biomarkers of K.; Strzelecki, D. The Influence of therapeutic response to antidepressant treatment. Depression and metabolic syndrome often coexist, Probiotic Supplementation on while a pathophysiological overlap, including microbiota changes, may play a role. The paper Depressive Symptoms, Inflammation, presents a study protocol that aims to assess the effect of probiotic supplementation on symptoms of and Oxidative Stress Parameters and depression, anxiety and stress, metabolic parameters, inflammatory and oxidative stress markers, as Fecal Microbiota in Patients with well as fecal microbiota in adult patients with depressive disorders depending on the co-occurrence Depression Depending on Metabolic Syndrome Comorbidity—PRO-DEMET of metabolic syndrome.
    [Show full text]
  • Lactic Acid Bacteria Exopolysaccharides Producers: a Sustainable Tool for Functional Foods
    foods Review Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods Roberta Prete 1 , Mohammad Khairul Alam 1, Giorgia Perpetuini 1,*, Carlo Perla 2, Paola Pittia 1 and Aldo Corsetti 1 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; [email protected] (R.P.); [email protected] (M.K.A.); [email protected] (P.P.); [email protected] (A.C.) 2 Dalton Biotecnologie srl, Spoltore, 65010 Pescara, Italy; [email protected] * Correspondence: [email protected] Abstract: Lactic acid bacteria (LAB) used in the food industry, mainly for the production of dairy products, are able to synthetize exopolysaccharides (EPS). EPS play a central role in the assessment of rheological and sensory characteristics of dairy products since they positively influence texture and organoleptic properties. Besides these, EPS have gained relevant interest for pharmacological and nutraceutical applications due to their biocompatibility, non-toxicity and biodegradability. These bioactive compounds may act as antioxidant, cholesterol-lowering, antimicrobial and prebiotic agents. This review provides an overview of exopolysaccharide-producing LAB, with an insight on the factors affecting EPS production, their dairy industrial applications and health benefits. Keywords: lactic acid bacteria; exopolysaccharides; functional foods; dairy industrial applications; health benefits Citation: Prete, R.; Alam, M.K.; Perpetuini, G.; Perla, C.; Pittia, P.; Corsetti, A. Lactic Acid Bacteria Exopolysaccharides Producers: A 1. Introduction Sustainable Tool for Functional Foods. Bacteria are well known for their ability to produce a wide variety of polysaccha- Foods 2021, 10, 1653. https://doi.org/ rides, which can be tightly linked to the cell surface forming a capsular polysaccharide 10.3390/foods10071653 (CPS) or secreted as exopolysaccharides (EPS).
    [Show full text]
  • Lactobacillus Mucosae Strain Promoted by a High-Fiber Diet In
    microorganisms Article Lactobacillus Mucosae Strain Promoted by a High-Fiber Diet in Genetic Obese Child Alleviates Lipid Metabolism and Modifies Gut Microbiota in ApoE-/- Mice on a Western Diet Tianyi Jiang 1 , Huan Wu 1, Xin Yang 1, Yue Li 1, Ziyi Zhang 1, Feng Chen 1, Liping Zhao 1,2 and Chenhong Zhang 1,* 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (T.J.); [email protected] (H.W.); [email protected] (X.Y.); liyue–[email protected] (Y.L.); [email protected] (Z.Z.); [email protected] (F.C.); [email protected] (L.Z.) 2 Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA * Correspondence: [email protected] Received: 17 July 2020; Accepted: 5 August 2020; Published: 12 August 2020 Abstract: Supplementation of probiotics is a promising gut microbiota-targeted therapeutic method for hyperlipidemia and atherosclerosis. However, the selection of probiotic candidate strains is still empirical. Here, we obtained a human-derived strain, Lactobacillus mucosae A1, which was shown by metagenomic analysis to be promoted by a high-fiber diet and associated with the amelioration of host hyperlipidemia, and validated its effect on treating hyperlipidemia and atherosclerosis as well as changing structure of gut microbiota in ApoE-/- mice on a Western diet. L. mucosae A1 attenuated the severe lipid accumulation in serum, liver and aortic sinus of ApoE-/- mice on a Western diet, while it also reduced the serum lipopolysaccharide-binding protein content of mice, reflecting the improved metabolic endotoxemia.
    [Show full text]
  • Open-Access Article
    Insert front cover on this page. Lactobacillus Genomics and Metabolic Engineering Edited by Sandra M. Ruzal Caister Academic Press Chapter 3 from: Lactobacillus Genomics and Metabolic Engineering Edited by Sandra M. Ruzal ISBN: 978-1-910190-89-0 (paperback) ISBN: 978-1-910190-90-6 (ebook) Caister Academic Press www.caister.com Complex Oligosaccharide Utilization Pathways in Lactobacillus 3 Manuel Zúñiga*, María Jesús Yebra and Vicente Monedero Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain. *Correspondence: [email protected] https://doi.org/10.21775/9781910190890.03 Abstract the microbes find in the different compartments of Lactobacillus is the bacterial genus that contains the gastrointestinal tract (Gu et al., 2013; Kim and the highest number of characterized probiotics. Isaacson, 2015; Stearns et al., 2011; Tropini et al., Lactobacilli in general can utilize a great variety 2017). For example, Lactobacillaceae is predomi- of carbohydrates. This characteristic is an essential nantly found in the stomach and small intestine of trait for their survival in highly competitive environ- mice whereas anaerobes such as Bacteroidaceae, ments such as the gastrointestinal tract of animals. In Prevotellaceae, Rikenellaceae, Lachnospiraceae particular, the ability of some strains to utilize com- and Ruminococcaceae are mainly found in the plex carbohydrates such as milk oligosaccharides large intestine and faeces (Gu et al., 2013). In the as well as their precursor monosaccharides, confer oral cavity of humans, a neutral pH and aerobic upon lactobacilli a competitive advantage. For this conditions prevail although anaerobic niches are reason, many of these carbohydrates are considered also present. The environment in the stomach is as prebiotics.
    [Show full text]
  • The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment
    nutrients Review The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment Jonathan C. W. Liu 1,2 , Ilona Gorbovskaya 1,3, Margaret K. Hahn 1,2,3,4,5 and Daniel J. Müller 1,2,3,4,* 1 Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; [email protected] (J.C.W.L.); [email protected] (I.G.); [email protected] (M.K.H.) 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada 3 Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada 4 Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada 5 Banting and Best Diabetes Centre, University of Toronto, ON M5G 2C4, Canada * Correspondence: [email protected] Abstract: The gut microbiome (GMB) plays an important role in developmental processes and has been implicated in the etiology of psychiatric disorders. However, the relationship between GMB and schizophrenia remains unclear. In this article, we review the existing evidence surrounding the gut microbiome in schizophrenia and the potential for antipsychotics to cause adverse metabolic events by altering the gut microbiome. We also evaluate the current evidence for the clinical use of probiotic and prebiotic treatment in schizophrenia. The current data on microbiome alteration in schizophrenia remain conflicting. Longitudinal and larger studies will help elucidate the confounding effect on the microbiome. Current studies help lay the groundwork for further investigations into the role of the GMB in the development, presentation, progression and potential treatment of schizophrenia.
    [Show full text]