Recommended Biological Agents Intentionally Added to Food Or Feed As Notified to EFSA 12
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga , Annie Espinal-Centeno , Shamayim Martinez-Sanchez , Juan 1 2 1,3 Caballero-Pérez , Luis D. Alcaraz * & Alfredo Cruz-Ramirez *. 1 Molecular & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ● Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. During colonial times they were renamed with the antillan word maguey. This was changed again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several Mexican prehispanic cultures, Agave species were not only considered as crops, but also part of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli. -
Probiotic Lactic Yeast® New Generation Probiotic Kluyveromyces B0399
PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399®(Turval B0399®) Kluyveromyces marxianus fragilis B0399 “K. marxianus B0399® demonstrated a number of beneficial and strain specific properties desirable for application as a probiotic”, research done by University of Bologna, Italy and University of Reading, UK and published by the American Society for Microbiology in the scientific journal Applied Environmental Microbiology, 2012 Feb; 78 (4) APPROVALS AND RECOGNITIONS BY NATIONAL AND INTERNATIONAL AUTHORITIES: Turval is an official supplier of the Italian MInistry of Health Italian Army (Esercito Italiano) for animal use: Canadian Food Inspection Agency Scientific and Technologic Park (ZIU); University of Udine via J.Linussio, 51; 33100 Udine, Italy tel.+39 (0432)629731 fax.+39 (0432)603887 E-mail: [email protected] Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 HUMAN NUTRITION NUTRIRE IL PIANETA ENERGIA PER LA VITA FEEDING THE PLANET ENERGY FOR LIFE EUFYR [COOP, ITALY], THE FIRST COMMERCIALISED PROBIOTIC YOGURT CONTAINING KLUYVEROMYCES B0399®, WAS CHOSEN FOR THE UNIVERSAL EXHIBITION EXPO 2015 AS AN EXAMPLE OF LEADING INNOVATION IN FUNCTIONAL DAIRY PRODUCTS. NEW GENERATION PROBIOTYC YOGURT WITH PROBIOTIC LACTIC YEAST® COOP ITALY Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® BROUGHT MULTIPLE AWARDS TO YOGURTS PRODUCERS FOR THE MOST INNOVATIVE PRODUCT EUROPEAN AWARD IN 2014 "EUFYR POMEGRANATE", PRODUCED BY ONE OF THE BIGGEST ITALIAN RETAILERS, COOP – ITALY, WINS PRESTIGIOUS PLMA'S INTERNATIONAL "SALUTE TO EXCELLENCE" AWARD IN AMSTERDAM; EUFYR IS THE WINNER AMONG 16 EUROPEAN COUNTRIES FOR THE BEST INNOVATION IN PRIVATE LABEL Recognizing Innovation in Private Label Welcome to PLMA’s International Salute to Excellence Awards, honouring retailers for their commitment to their own brands and giving recognition to their innovative private label products. -
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Synthesis of Polyketides from Low Cost Substrates by the Thermotolerant Yeast Kluyveromyces Marxianus
! ! "#$%&'()(!*+!,*-#.'%)/'(!+0*1!-*2!3*(%!(45(%06%'(!5#!%&'! %&'01*%*-'06$%!#'6(%!!"#$%&'()$*&+,)-'./-0#+, ! ! !"#$%&'%()!"**"+,-%."/$0110%2030+-%45"/0%2"660,,-%"/7%8"/)9%:'%."%4$13"!% ! !"#$%&'"(&)*+),-"'./$0)$(1)2.*'*0"/30$%)4(5.(""%.(5) 6(.7"%8.&9)*+),$0.+*%(.$:);%7.(":),<:)6=<) ! ! ",*%%"8#*(1.(5)$3&-*%) !01;)>?@ABCBDEFCDEFEE) <=#"$1;)(1$8.07$G3/.H"13) % % % ! >09%?@+76;!"#$%&'()*%+',!*-(./-0$,1!&-"%'*&*0"%$(/":)I90*8":)#*09J"&.1"8:)&%.$/"&./)$/.1) 0$/&*(") ! ! ! "! "#$%&'(%! !"#$%&'()$*&+,)-'./-0#+,$%!&!'()*$%$+,!+)+-)+./+0$)+&1!2/&%0!3)(!4$)4&%/5!-6/*$-&1!'()57-0$)+!57/!0)! $0%! (&'$5! ,()806! (&0/9! 6$,6! :;<! -2-1/! 317=9! &+5! 0)1/(&+-/! 0)! 1)8! '>! &+5! 6$,6! 0/*'/(&07(/?! @+1$A/! 12, *&'&%/+/-&3!!2,)-'./-0#+,,()8%!)+!1)8B-)%0!%74%0(&0/%!0)!-/11!5/+%$0$/%!06&0!/C7&1!)(!%7('&%%!5/+%$0$/%!$+! ,17-)%/9! 86$-6! -&+! 4/! 4/+/3$-$&1! 3)(! 70$1$D&0$)+! )3! 1$,+)-/1171)%$-! 4$)*&%%! E=21)%/F9! 4$)37/1! '()57-0$)+! 8&%0/!E,12-/()1F9!&+5!86/2!E1&-0)%/F?!G/!6&./!/.&17&0/5!!2,)-'./-0#+!3)(!06/!%2+06/%$%!)3!')12A/0$5/%9! 7%$+,! 0($&-/0$-! &-$5! 1&-0)+/! E:<HF! &%! 06/! '()57-0?! :6/! #B'2()+/! %2+06&%/! E#BIJF! 8&%! /='(/%%/5! )+! &! ;KLM<NJ!'1&%*$5!$+!06(//!5$33/(/+0!%0(&$+%9!&+5!06/!/33/-0%!)3!0/*'/(&07(/9!-&(4)+!%)7(-/9!&+5!-710$.&0$)+! %0(&0/,2!)+!:<H!1/./1%!8/(/!5/0/(*$+/5?!:6/!6$,6/%0!0$0/(!8&%!)40&$+/5!$+!5/3$+/5!"O!=21)%/!*/5$7*!&0! PQ!;9! 8$06! %74%0&+0$&1! 0$0/(%! &0! R"!;! &+5! RP!;?! :6/! $+0()57-0$)+! )3! &! 6$,6B%0&4$1$02! #BIJ! *70&+0! &+5! &! '()*)0/(! %74%0$070$)+! $+-(/&%/5! 0$0/(! RB3)15?! #BIJ! /='(/%%$)+! 3()*! &! -
Comparative Genomics Analysis of Lactobacillus Mucosae from Different Niches
G C A T T A C G G C A T genes Article Comparative Genomics Analysis of Lactobacillus mucosae from Different Niches Yan Jia 1,2, Bo Yang 1,2,3,* , Paul Ross 3,4, Catherine Stanton 3,5, Hao Zhang 1,2,6,7, Jianxin Zhao 1,2,6 and Wei Chen 1,2,6,8 1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; [email protected] (Y.J.); [email protected] (H.Z.); [email protected] (J.Z.); [email protected] (W.C.) 2 School of Food Science and Technology, Jiangnan University, Wuxi 214122, China 3 International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; [email protected] (P.R.); [email protected] (C.S.) 4 APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland 5 Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland 6 National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China 7 Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China 8 Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China * Correspondence: [email protected]; Tel.: +86-510-591-2155 Received: 5 December 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: The potential probiotic benefits of Lactobacillus mucosae have received increasing attention. To investigate the genetic diversity of L. mucosae, comparative genomic analyses of 93 strains isolated from different niches (human and animal gut, human vagina, etc.) and eight strains of published genomes were conducted. -
Rational Engineering of Kluyveromyces Marxianus to Create a Chassis for the Production of Aromatic Products Arun S
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247957; this version posted August 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products Arun S. Rajkumar and John P. Morrissey* School of Microbiology / Centre for Synthetic Biology and Biotechnology / Environmental Research Institute / APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland *To whom correspondence may be addressed: [email protected] Abstract The yeast Kluyveromyces marxianus offers unique potential for industrial biotechnology because of useful features like rapid growth, thermotolerance and a wide substrate range. As an emerging alternative platform, K. marxianus requires the development and validation of metabolic engineering strategies to best utilize its metabolism as a basis for bio-based production. To illustrate the synthetic biology strategies to be followed and showcase its potential, we describe a comprehensive approach to rationally engineer a metabolic pathway in K. marxianus. We use the phenylalanine biosynthetic pathway both as a prototype and because phenylalanine is a precursor for commercially valuable secondary metabolites. First, we modify and overexpress the pathway to be resistant to feedback inhibition so as to overproduce phenylalanine de novo from synthetic minimal medium. Second, we assess native and heterologous means to increase precursor supply to the biosynthetic pathway. Finally, we eliminate branch points and competing reactions in the pathway and rebalance precursors to redirect metabolic flux to a specific product, 2-phenylethanol (2-PE). -
Analysis of the Composition of Lactobacilli in Humans
Note Bioscience Microflora Vol. 29 (1), 47–50, 2010 Analysis of the Composition of Lactobacilli in Humans Katsunori KIMURA1*, Tomoko NISHIO1, Chinami MIZOGUCHi1 and Akiko KOIZUMI1 1Division of Research and Development, Meiji Dairies Corporation, 540 Naruda, Odawara, Kanagawa 250-0862, Japan Received July 19, 2009; Accepted August 31, 2009 We collected fecal samples twice from 8 subjects and obtained 160 isolates of lactobacilli. The isolates were genetically fingerprinted and identified by pulsed-field gel electrophoresis (PFGE) and 16S rDNA sequence analysis, respectively. The numbers of lactobacilli detected in fecal samples varied greatly among the subjects. The isolates were divided into 37 strains by PFGE. No common strain was detected in the feces of different subjects. Except for one subject, at least one strain, unique to each individual, was detected in both fecal samples. The strains detected in both fecal samples were identified as Lactobacillus amylovorus, L. gasseri, L. fermentum, L. delbrueckii, L. crispatus, L. vaginalis and L. ruminis. They may be the indigenous Lactobacillus species in Japanese adults. Key words: lactobacilli; Lactobacillus; composition; identification; PFGE Members of the genus Lactobacillus are gram-positive was used to make a fecal homogenate in 9 ml of organisms that belong to the general category of lactic Trypticase soy broth without dextrose (BBL, acid bacteria. They inhabit a wide variety of habitats, Cockeysville, MD). A dilution series (10–1 to 10–7) was including foods, plants and the gastrointestinal tracts of made in the same medium, and 100-l aliquots of each humans and animals. Some Lactobacillus strains are dilution were spread on Rogosa SL agar (Difco, Sparks, used in the manufacture of fermented foods. -
Genome-Based Selection and Application of Food-Grade Microbes
Tangyu et al. Microb Cell Fact (2021) 20:109 https://doi.org/10.1186/s12934-021-01595-2 Microbial Cell Factories RESEARCH Open Access Genome-based selection and application of food-grade microbes for chickpea milk fermentation towards increased L-lysine content, elimination of indigestible sugars, and improved favour Muzi Tangyu1, Michel Fritz1, Rosa Aragao‑Börner2, Lijuan Ye2, Biljana Bogicevic2, Christoph J. Bolten3 and Christoph Wittmann1* Abstract Background: Plant‑based milk alternatives are more popular than ever, and chickpea‑based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid L‑lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations. Results: Using in-silico screening and food safety classifcations, 31 strains were selected as potential L‑lysine pro‑ ducers from approximately 2,500 potential candidates. Benefcially, 30% of the isolates signifcantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best‑ performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by 13C metabolic pathway analysis. Spiking small amounts of citrate into the fermentation signifcantly activated L‑lysine biosynthesis in NCC 156 and stimulated growth. Both microbes revealed additional benefts in eliminating indigestible sugars such as stachyose and rafnose and convert‑ ing of‑favour aldehydes into the corresponding alcohols and acids with fruity and sweet notes. Conclusions: B. amyloliquefaciens NCC 156 and L. -
Intensive Multiple Sequential Batch Simultaneous Saccharification and Cultivation of K
processes Article Intensive Multiple Sequential Batch Simultaneous Saccharification and Cultivation of Kluyveromyces marxianus SS106 Thermotolerant Yeast Strain for Single-Step Ethanol Fermentation from Raw Cassava Starch Kwanruthai Malairuang 1 , Morakot Krajang 1, Rapeepong Rotsattarat 2 and Saethawat Chamsart 3,* 1 Biological Sciences Program, Faculty of Science, Burapha University, Chonburi 20131, Thailand; [email protected] (K.M.); [email protected] (M.K.) 2 Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131, Thailand; [email protected] 3 Department of Biology, Faculty of Science, Burapha University, Chonburi 20131, Thailand * Correspondence: [email protected]; Tel.: +6696-887-3878 Received: 29 June 2020; Accepted: 20 July 2020; Published: 27 July 2020 Abstract: We developed the intensive multiple sequential batch simultaneous saccharification and cultivation of the selected thermotolerant yeast strain for single-step ethanol production. The selection and high-cell-density inoculum production of thermotolerant yeast able to produce ethanol under the optimal conditions for single-step ethanol fermentation has become a necessity. In this study, the newly isolated Kluyveromyces marxianus SS106 could tolerate high temperatures (35–45 ◦C) and grow under a wide range of pH values (3.0–5.5), which are the optimum conditions of raw cassava starch hydrolyzing enzyme used in single-step ethanol fermentation. The high-cell-density concentration of K. marxianus SS106 was produced by a single batch and an intensive multiple sequential batch process in a 5-L stirred tank bioreactor using the simultaneous saccharification and cultivation (SSC) method. The single SSC process yielded the yeast cell biomass at a concentration of 39.30 g/L with a productivity 1 of 3.28 g/L/h and a specific growth rate of 0.49 h− . -
Biofunctionality of Sourdough Metabolites in Healthy and Inflamed Gastrointestinal Tract
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Ernährung und Immunologie BIOFUNCTIONALITY OF SOURDOUGH METABOLITES IN HEALTHY AND INFLAMED GASTROINTESTINAL TRACT Anna Zhenchuk Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Rychlik Prüfer der Dissertation: Univ.-Prof. Dr. D. Haller Univ.-Prof. Dr. Th. F. Hofmann Die Dissertation wurde am 04.12.2013 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 08.05.2014 angenommen. Mоїй дорогiй родинi TABLE OF CONTENT TABLE OF CONTENT 1. ABSTRACT 5 2. INTRODUCTION 6 2.1. Fermented foods 6 2.2. Sourdough bread - general information 7 2.3. Sourdough fermentation and implications for health 8 2.4. Interface function of gastrointestinal tract 10 2.5. Food components and intestinal homeostasis 15 2.6. Disorders of gastrointestinal tract 17 2.6.1. Inflammatory Bowel Diseases 18 2.6.2. Irritable Bowel Syndrome 21 2.7. IBD, IBS and dietary interventions 23 2.7.1. Probiotics in in vitro and in vivo experimental models 24 2.7.2. Probiotics and the clinical evidence 26 2.7.3. Prebiotics in in vitro and in vivo experimental models 27 2.7.4. Prebiotics and the clinical evidence 28 2.7.5. Other dietary interventions 29 2.8. Experimental models of IBD 30 3. AIMS OF THE WORK 32 4. MATERIALS AND METHODS 33 5. RESULTS 44 5.1. Sourdough bread feeding has variable effect in experimental models of colitis and ileitis. -
Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come
P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi Biology and Applications Second Edition Editor Kevin Kavanagh Department of Biology National University of Ireland Maynooth Maynooth County Kildare Ireland A John Wiley & Sons, Ltd., Publication P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come This edition first published 2011 © 2011 by John Wiley & Sons, Ltd. Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered Office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/ wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. -
12. Kluyveromyces Marxianus Var. Marxianus
FEBS 24376 FEBS Letters 487 (2000) 71^75 Genomic Exploration of the Hemiascomycetous Yeasts: 12. Kluyveromyces marxianus var. marxianus Bertrand Llorentea;*, Alain Malpertuya, Gae«lle Blandina, Franc°ois Artiguenaveb, Patrick Winckerb, Bernard Dujona aUnite¨ de Ge¨ne¨tique Mole¨culaire des Levures, (URA 2171 du CNRS and UFR 927 Universite¨ Pierre et Marie Curie), Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France bGe¨noscope-Centre National de Se¨quenc°age, 2 rue Gaston Cre¨mieux P.O. Box 191, 91006 Evry Cedex, France Received 3 November 2000; accepted 9 November 2000 First published online 27 November 2000 Edited by Horst Feldmann genes encoding the inulinase [9], the L-glucosidase [10], the Abstract As part of the comparative genomics project `GEN- OLEVURES', we studied the Kluyveromyces marxianus var. pectin-degrading endopolygalacturonase Epg1p [11], the three marxianus strain CBS712 using a partial random sequencing glyceraldehyde-3-phosphate dehydrogenases Gap1p, Gap2p, strategy. With a 0.2Ugenome equivalent coverage, we identified Gap3p [12] and a pyruvate decarboxylase [9]. ca. 1300 novel genes encoding proteins, some containing The present analysis of 2491 Random Sequenced Tags spliceosomal introns with consensus splice sites identical to those (RSTs) totaling 2363 kb or 17% of the entire genome of K. of Saccharomyces cerevisiae, 28 tRNA genes, the whole rDNA marxianus allowed the identi¢cation of ca. 1300 novel nuclear repeat, and retrotransposons of the Ty1/2 family of S. cerevisiae genes encoding proteins, 28 novel nuclear tRNA genes and a with diverged Long Terminal Repeats. Functional classification novel class of retrotransposon belonging to the copia family.