Towards Bio-Hybrid Energy Harvesting in the Real-World: Pushing the Boundaries of Technologies and Strategies Using Bio-Electrochemical and Bio-Mechanical Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga , Annie Espinal-Centeno , Shamayim Martinez-Sanchez , Juan 1 2 1,3 Caballero-Pérez , Luis D. Alcaraz * & Alfredo Cruz-Ramirez *. 1 Molecular & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ● Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. During colonial times they were renamed with the antillan word maguey. This was changed again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several Mexican prehispanic cultures, Agave species were not only considered as crops, but also part of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli. -
Probiotic Lactic Yeast® New Generation Probiotic Kluyveromyces B0399
PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399®(Turval B0399®) Kluyveromyces marxianus fragilis B0399 “K. marxianus B0399® demonstrated a number of beneficial and strain specific properties desirable for application as a probiotic”, research done by University of Bologna, Italy and University of Reading, UK and published by the American Society for Microbiology in the scientific journal Applied Environmental Microbiology, 2012 Feb; 78 (4) APPROVALS AND RECOGNITIONS BY NATIONAL AND INTERNATIONAL AUTHORITIES: Turval is an official supplier of the Italian MInistry of Health Italian Army (Esercito Italiano) for animal use: Canadian Food Inspection Agency Scientific and Technologic Park (ZIU); University of Udine via J.Linussio, 51; 33100 Udine, Italy tel.+39 (0432)629731 fax.+39 (0432)603887 E-mail: [email protected] Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 HUMAN NUTRITION NUTRIRE IL PIANETA ENERGIA PER LA VITA FEEDING THE PLANET ENERGY FOR LIFE EUFYR [COOP, ITALY], THE FIRST COMMERCIALISED PROBIOTIC YOGURT CONTAINING KLUYVEROMYCES B0399®, WAS CHOSEN FOR THE UNIVERSAL EXHIBITION EXPO 2015 AS AN EXAMPLE OF LEADING INNOVATION IN FUNCTIONAL DAIRY PRODUCTS. NEW GENERATION PROBIOTYC YOGURT WITH PROBIOTIC LACTIC YEAST® COOP ITALY Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® BROUGHT MULTIPLE AWARDS TO YOGURTS PRODUCERS FOR THE MOST INNOVATIVE PRODUCT EUROPEAN AWARD IN 2014 "EUFYR POMEGRANATE", PRODUCED BY ONE OF THE BIGGEST ITALIAN RETAILERS, COOP – ITALY, WINS PRESTIGIOUS PLMA'S INTERNATIONAL "SALUTE TO EXCELLENCE" AWARD IN AMSTERDAM; EUFYR IS THE WINNER AMONG 16 EUROPEAN COUNTRIES FOR THE BEST INNOVATION IN PRIVATE LABEL Recognizing Innovation in Private Label Welcome to PLMA’s International Salute to Excellence Awards, honouring retailers for their commitment to their own brands and giving recognition to their innovative private label products. -
Strategic Electrification and Codes
Strategic Electrification and Energy Codes February 2021 Table of Contents Introduction ................................................................................................................................................................3 Shifting the Code Conversation to Carbon .................................................................................................................4 Carbon Reduction through Strategic Electrification ...............................................................................................4 Combustion-Free Requirements ............................................................................................................................4 Code Adoption, Stretch Codes, and Electrification Opportunities in Code ................................................................5 Regional Code Adoption Landscape .......................................................................................................................5 Stretch Codes in the Region ...................................................................................................................................6 DC Stretch Code- Appendix Z .................................................................................................................................6 IECC 2021: Opportunities and Setbacks .................................................................................................................7 Electrification in Codes ...............................................................................................................................................8 -
Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions
energies Article Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions Ola Eriksson 1,* and Göran Finnveden 2 1 Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, University of Gävle, SE 801 76 Gävle, Sweden 2 Division of Environmental Strategies Research–fms, Department of Sustainable Development, Environmental Sciences and Engineering (SEED), School of Architecture and the Built Environment, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden; goran.fi[email protected] * Correspondence: [email protected]; Tel.: +46-26-648145 Academic Editor: George Kosmadakis Received: 19 October 2016; Accepted: 12 April 2017; Published: 15 April 2017 Abstract: Previous studies on waste incineration as part of the energy system show that waste management and energy supply are highly dependent on each other, and that the preconditions for the energy system setup affects the avoided emissions and thereby even sometimes the total outcome of an environmental assessment. However, it has not been previously shown explicitly which key parameters are most crucial, how much each parameter affects results and conclusions and how different aspects depend on each other. The interconnection between waste incineration and the energy system is elaborated by testing parameters potentially crucial to the result: design of the incineration plant, avoided energy generation, degree of efficiency, electricity efficiency in combined heat and power plants (CHP), avoided fuel, emission level of the avoided electricity generation and avoided waste management. CO2 emissions have been calculated for incineration of 1 kWh mixed combustible waste. The results indicate that one of the most important factors is the electricity efficiency in CHP plants in combination with the emission level of the avoided electricity generation. -
Synthesis of Polyketides from Low Cost Substrates by the Thermotolerant Yeast Kluyveromyces Marxianus
! ! "#$%&'()(!*+!,*-#.'%)/'(!+0*1!-*2!3*(%!(45(%06%'(!5#!%&'! %&'01*%*-'06$%!#'6(%!!"#$%&'()$*&+,)-'./-0#+, ! ! !"#$%&'%()!"**"+,-%."/$0110%2030+-%45"/0%2"660,,-%"/7%8"/)9%:'%."%4$13"!% ! !"#$%&'"(&)*+),-"'./$0)$(1)2.*'*0"/30$%)4(5.(""%.(5) 6(.7"%8.&9)*+),$0.+*%(.$:);%7.(":),<:)6=<) ! ! ",*%%"8#*(1.(5)$3&-*%) !01;)>?@ABCBDEFCDEFEE) <=#"$1;)(1$8.07$G3/.H"13) % % % ! >09%?@+76;!"#$%&'()*%+',!*-(./-0$,1!&-"%'*&*0"%$(/":)I90*8":)#*09J"&.1"8:)&%.$/"&./)$/.1) 0$/&*(") ! ! ! "! "#$%&'(%! !"#$%&'()$*&+,)-'./-0#+,$%!&!'()*$%$+,!+)+-)+./+0$)+&1!2/&%0!3)(!4$)4&%/5!-6/*$-&1!'()57-0$)+!57/!0)! $0%! (&'$5! ,()806! (&0/9! 6$,6! :;<! -2-1/! 317=9! &+5! 0)1/(&+-/! 0)! 1)8! '>! &+5! 6$,6! 0/*'/(&07(/?! @+1$A/! 12, *&'&%/+/-&3!!2,)-'./-0#+,,()8%!)+!1)8B-)%0!%74%0(&0/%!0)!-/11!5/+%$0$/%!06&0!/C7&1!)(!%7('&%%!5/+%$0$/%!$+! ,17-)%/9! 86$-6! -&+! 4/! 4/+/3$-$&1! 3)(! 70$1$D&0$)+! )3! 1$,+)-/1171)%$-! 4$)*&%%! E=21)%/F9! 4$)37/1! '()57-0$)+! 8&%0/!E,12-/()1F9!&+5!86/2!E1&-0)%/F?!G/!6&./!/.&17&0/5!!2,)-'./-0#+!3)(!06/!%2+06/%$%!)3!')12A/0$5/%9! 7%$+,! 0($&-/0$-! &-$5! 1&-0)+/! E:<HF! &%! 06/! '()57-0?! :6/! #B'2()+/! %2+06&%/! E#BIJF! 8&%! /='(/%%/5! )+! &! ;KLM<NJ!'1&%*$5!$+!06(//!5$33/(/+0!%0(&$+%9!&+5!06/!/33/-0%!)3!0/*'/(&07(/9!-&(4)+!%)7(-/9!&+5!-710$.&0$)+! %0(&0/,2!)+!:<H!1/./1%!8/(/!5/0/(*$+/5?!:6/!6$,6/%0!0$0/(!8&%!)40&$+/5!$+!5/3$+/5!"O!=21)%/!*/5$7*!&0! PQ!;9! 8$06! %74%0&+0$&1! 0$0/(%! &0! R"!;! &+5! RP!;?! :6/! $+0()57-0$)+! )3! &! 6$,6B%0&4$1$02! #BIJ! *70&+0! &+5! &! '()*)0/(! %74%0$070$)+! $+-(/&%/5! 0$0/(! RB3)15?! #BIJ! /='(/%%$)+! 3()*! &! -
2017 District of Columbia Energy Conservation Code
2017 District of Columbia Energy Conservation Code 2017 District of Columbia Energy Conservation Code 2017 District of Columbia Energy Conservation Code First Printing: September 2020 COPYRIGHT © 2014 International Code Council, Inc. (for 2015 International Energy Conservation Code®) COPYRIGHT © 2020 Government of the District of Columbia (for new text) ALL RIGHTS RESERVED. This 2017 District of Columbia Energy Conservation Code contains substantial copyrighted materi- als from the 2015 International Energy Conservation Code®, third printing, which is a copyrighted work owned by the Interna- tional Code Council, Inc. (“ICC”). Without advance written permission from the ICC, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limitation, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an information storage retrieval system). For information on use rights and permissions, please contact: ICC Publications, 4051 Flossmoor Road, Country Club Hills, IL 60478. Phone 1- 888-ICC-SAFE (422-7233). The 2017 District of Columbia Energy Conservation Code contains substantial copyrighted material from the ANSI/ASHRAE/IES Standard 90.1—2013, which is a copyrighted work owned by ASHRAE. Without advance written permission from the copyright owner, no part of this book may be reproduced, distributed or transmitted in any form or by any means, including, without limita- tion, electronic, optical or mechanical means (by way of example, and not limitation, photocopying, or recording by or in an infor- mation storage retrieval system). For information on permission to copy material exceeding fair use, please contact: ASHRAE Publications, 1791 Tullie NE, Atlanta, GA 30329. -
Research, Development, Demonstrations and Commercialisation Endeavours for Accelerating Clean Energy Innovations
Research, development, demonstrations and commercialisation endeavours for accelerating Clean Energy Innovations Sanjay Bajpai Adviser/ Scientist ‘G’ Department of Science & Technology (DST) Ministry of Science & Technology, Government of India New Mehrauli Road, New Delhi-110016 [email protected] www.dst.gov.in Science, Technology and Innovation Framework for Clean Energy Innovation National Policy Accelerate the pace of discovery and delivery of science led solutions for High priority sector including Energy through enhanced global cooperation and Public-Private Partnership (PPP) DST Mandate Build human, institutional and technology capacity forging alliances, partnership and R&D Missions for larger benefit of society through S&T. Mission for Clean Energy • Promote novel ideas & cutting edge research to foster innovations • Foster Translational Research to develop competitive technologies • Nurture start ups and partner with industry for accelerated diffusion through start ups and industries. Page 1 Advancing technology readiness levels through Clean Energy Research, Development and Demonstration Fundamental and early stage research ( www.serb.gov.in) Capacity building, applied research, proof of concept, technology development, demonstrations ( www.dst.gov.in, www.dsttara.in ) Market readiness of promising innovations and technologies (www.nstedb.com, www.tdb.gov.in ) 550 DST’s Clean Energy Portfolio DST Funding for Clean Energy 500 2000 450 1800 400 1600 350 1400 ₹ 300 ₹ 1200 250 1000 200 800 in million million in inmillion 600 150 -
Department of Energy Small Business Innovation Research Program and Small Business Technology Transfer Program
DEPARTMENT OF ENERGY SMALL BUSINESS INNOVATION RESEARCH PROGRAM AND SMALL BUSINESS TECHNOLOGY TRANSFER PROGRAM PHASE I RECOVERY ACT APPLICATIONS SELECTED FOR AWARDS BY STATE ARKANSAS Company Title NanoMech, LLC Recovery Act – 535 Research Center Boulevard, Suite 135 Scale-up of Production of Active Nanoparticles-Based Novel Fayetteville, AR 72701-6948 Lubricant Additives to Improve Energy Efficiency and Durability Summary This proposal addresses scale-up and commercialization of novel nanoparticles-based lubricant additives for harsh boundary lubrication regimes (ball bearings, gears, and other related equipment) saving hundreds of millions of dollars from fuel savings, reduced vehicle exhaust emission, reduced friction and wear to improve energy efficiency and durability of U.S. industries. ARIZONA Company Title MER Corporation (Materials and Electrochemical Research) Recovery Act – 7960 South Kolb Road A Very Low Cost Process for the Manufacture of Ti Heat Tucson, AZ 85756-9237 Exchanger Components for Desalination Summary The very low cost titanium manufacturing developed in this program will provide a dramatic reduction in the cost of heat exchangers used for desalination. In addition to the increased availability of potable water, this will provide a major commercial advantage for domestic corporations for the sale and operation of these plants. Company Title MER Corporation (Materials and Electrochemical Research) Recovery Act – An Improved Design for Magnetocaloric 7960 South Kolb Road Refrigeration Tucson, AZ 85756-9237 Summary An enhanced thermodynamic cycle to improve performance and simultaneously reduce cost of magnetic refrigerators and air conditioners will be tested in a breadboard prototype refrigerator. Results of the tests will be applied to design a new generation magnetic refrigerator that can compete favorably with modern commercial devices. -
Rational Engineering of Kluyveromyces Marxianus to Create a Chassis for the Production of Aromatic Products Arun S
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247957; this version posted August 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products Arun S. Rajkumar and John P. Morrissey* School of Microbiology / Centre for Synthetic Biology and Biotechnology / Environmental Research Institute / APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland *To whom correspondence may be addressed: [email protected] Abstract The yeast Kluyveromyces marxianus offers unique potential for industrial biotechnology because of useful features like rapid growth, thermotolerance and a wide substrate range. As an emerging alternative platform, K. marxianus requires the development and validation of metabolic engineering strategies to best utilize its metabolism as a basis for bio-based production. To illustrate the synthetic biology strategies to be followed and showcase its potential, we describe a comprehensive approach to rationally engineer a metabolic pathway in K. marxianus. We use the phenylalanine biosynthetic pathway both as a prototype and because phenylalanine is a precursor for commercially valuable secondary metabolites. First, we modify and overexpress the pathway to be resistant to feedback inhibition so as to overproduce phenylalanine de novo from synthetic minimal medium. Second, we assess native and heterologous means to increase precursor supply to the biosynthetic pathway. Finally, we eliminate branch points and competing reactions in the pathway and rebalance precursors to redirect metabolic flux to a specific product, 2-phenylethanol (2-PE). -
Bioliquids and Their Use in Power Generation Â
Renewable and Sustainable Energy Reviews 129 (2020) 109930 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Bioliquids and their use in power generation – A technology review T. Seljak a, M. Buffi b,c, A. Valera-Medina d, C.T. Chong e, D. Chiaramonti f, T. Katra�snik a,* a University of Ljubljana, Faculty of Mechanical Engineering, A�sker�ceva Cesta 6, 1000, Ljubljana, Slovenia b RE-CORD, Viale Kennedy 182, 50038, Scarperia e San Piero, Italy c University of Florence, Industrial Engineering Department, Viale Morgagni 40, 50134, Firenze, Italy d Cardiff University College of Physical Sciences and Engineering, CF234AA, Cardiff, UK e China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China f University of Turin, Department of Energy "Galileo Ferraris", Corso Duca degli Abruzzi 24, 10129, Torino, Italy ARTICLE INFO ABSTRACT Keywords: The first EU Renewable Energy Directive (RED) served as an effective push for world-wide research efforts on Bioliquids biofuels and bioliquids, i.e. liquid fuels for energy purposes other than for transport, including electricity, Micro gas turbine heating, and cooling, which are produced from biomass. In December 2018 the new RED II was published in the Internal combustion engine OfficialJournal of the European Union. Therefore, it is now the right time to provide a comprehensive overview Power generation of achievements and practices that were developed within the current perspective. To comply with this objective, Renewable energy directive Biofuels the present study focuses on a comprehensive and systematic technical evaluation of all key aspects of the different distributed energy generation pathways using bioliquids in reciprocating engines and micro gas tur bines that were overseen by these EU actions. -
Waste Heat Recovery Technology Assessment
Quadrennial Technology Review 2015 Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics U.S. DEPARTMENT OF ENERGY Quadrennial Technology Review 2015 Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are illustrated below. Representative Intra-Chapter Connections Representative Extra-Chapter Connections CHP: heat recovery in CHP systems Sustainable Manufacturing: optimization of heat flows to maximize production intensity and minimize waste heat losses Electric Power: waste heat recovery Direct Thermal Energy Conversion: novel energy -
Intensive Multiple Sequential Batch Simultaneous Saccharification and Cultivation of K
processes Article Intensive Multiple Sequential Batch Simultaneous Saccharification and Cultivation of Kluyveromyces marxianus SS106 Thermotolerant Yeast Strain for Single-Step Ethanol Fermentation from Raw Cassava Starch Kwanruthai Malairuang 1 , Morakot Krajang 1, Rapeepong Rotsattarat 2 and Saethawat Chamsart 3,* 1 Biological Sciences Program, Faculty of Science, Burapha University, Chonburi 20131, Thailand; [email protected] (K.M.); [email protected] (M.K.) 2 Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131, Thailand; [email protected] 3 Department of Biology, Faculty of Science, Burapha University, Chonburi 20131, Thailand * Correspondence: [email protected]; Tel.: +6696-887-3878 Received: 29 June 2020; Accepted: 20 July 2020; Published: 27 July 2020 Abstract: We developed the intensive multiple sequential batch simultaneous saccharification and cultivation of the selected thermotolerant yeast strain for single-step ethanol production. The selection and high-cell-density inoculum production of thermotolerant yeast able to produce ethanol under the optimal conditions for single-step ethanol fermentation has become a necessity. In this study, the newly isolated Kluyveromyces marxianus SS106 could tolerate high temperatures (35–45 ◦C) and grow under a wide range of pH values (3.0–5.5), which are the optimum conditions of raw cassava starch hydrolyzing enzyme used in single-step ethanol fermentation. The high-cell-density concentration of K. marxianus SS106 was produced by a single batch and an intensive multiple sequential batch process in a 5-L stirred tank bioreactor using the simultaneous saccharification and cultivation (SSC) method. The single SSC process yielded the yeast cell biomass at a concentration of 39.30 g/L with a productivity 1 of 3.28 g/L/h and a specific growth rate of 0.49 h− .