Common Eye Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symptoms of Age Related Macular Degeneration
WHAT IS MACULAR DEGENERATION? wavy or crooked, visual distortions, doorway and the choroid are interrupted causing waste or street signs seem bowed, or objects may deposits to form. Lacking proper nutrients, the light- Age related macular degeneration (AMD) is appear smaller or farther away than they sensitive cells of the macula become damaged. a disease that may either suddenly or gradually should, decrease in or loss of central vision, and The damaged cells can no longer send normal destroy the macula’s ability to maintain sharp, a central blurry spot. signals from the macula through the optic nerve to central vision. Interestingly, one’s peripheral or DRY: Progression with dry AMD is typically slower your brain, and consequently your vision becomes side vision remains unaffected. AMD is the leading de-gradation of central vision: need for increasingly blurred cause of “legal blindness” in the United States for bright illumination for reading or near work, diffi culty In either form of AMD, your vision may remain fi ne persons over 65 years of age. AMD is present in adapting to low levels of illumination, worsening blur in one eye up to several years even while the other approximately 10 percent of the population over of printed words, decreased intensity or brightness of eye’s vision has degraded. Most patients don’t the age of 52 and in up to 33 percent of individuals colors, diffi culty recognizing faces, gradual increase realize that one eye’s vision has been severely older than 75. The macula allows alone gives us the in the haziness of overall vision, and a profound drop reduced because your brain compensates the bad ability to have: sharp vision, clear vision, color vision, in your central vision acuity. -
Vision Screening Training
Vision Screening Training Child Health and Disability Prevention (CHDP) Program State of California CMS/CHDP Department of Health Care Services Revised 7/8/2013 Acknowledgements Vision Screening Training Workgroup – comprising Health Educators, Public Health Nurses, and CHDP Medical Consultants Dr. Selim Koseoglu, Pediatric Ophthalmologist Local CHDP Staff 2 Objectives By the end of the training, participants will be able to: Understand the basic anatomy of the eye and the pathway of vision Understand the importance of vision screening Recognize common vision disorders in children Identify the steps of vision screening Describe and implement the CHDP guidelines for referral and follow-up Properly document on the PM 160 vision screening results, referrals and follow-up 3 IMPORTANCE OF VISION SCREENING 4 Why Screen for Vision? Early diagnosis of: ◦ Refractive Errors (Nearsightedness, Farsightedness) ◦ Amblyopia (“lazy eye”) ◦ Strabismus (“crossed eyes”) Early intervention is the key to successful treatment 5 Why Screen for Vision? Vision problems often go undetected because: Young children may not realize they cannot see properly Many eye problems do not cause pain, therefore a child may not complain of discomfort Many eye problems may not be obvious, especially among young children The screening procedure may have been improperly performed 6 Screening vs. Diagnosis Screening Diagnosis 1. Identifies children at 1. Identifies the child’s risk for certain eye eye condition conditions or in need 2. Allows the eye of a professional -
How Clean Is Your Capsule?
Eye (1989) 3, 678-684 How Clean is Your Capsule? W. T. GREEN and D. L. BOASE Portsmouth Summary Proliferation of residual lens epithelial cells is believed to be the major cause of pos terior capsule opacification following extracapsular cataract extraction. During sur gery these cells can be visualised with appropriate illumination facilitating their mechanical removal with the McIntyre cannula. When flat preparations of the anterior capsule are examined by light microscopy, the areas 'cleaned' of cells in this way appear transparent but scanning electron microscopy reveals tufts of remaining debris which may represent points of cellular attachment to the capsule. Control of lens epithelial cell proliferation is important for the future development of cataract surgery. The undoubted advantages of extracapsular and also on human cadaver eyes. A horizontal cataract extraction are offset in many patients capsulotomy in the upper part of the lens by posterior capsule opacification requiring allowed nucleus removal. Irrigation and caps ulotomy. Not only is this disappointing aspiration of the cortical lens material was for the patient, but the procedure carries a then carried out using a McIntyre cannula risk of serious complications. with Hartman's irrigation solution. During in The major cause of posterior capsule opac vitro surgery this was aided by first removing ification is proliferation of residual lens epi the entire cornea and iris to improve visual thelial cells. I If these cells could be removed at isation and explore different methods of the time of surgery we believe that the inci illumination. dence of posterior capsule opacification and The importance of illumination was first the need for subsequent capsulotomy would suspected when it was observed, during rou be reduced. -
Selective Attention Within the Foveola
ARTICLES Selective attention within the foveola Martina Poletti1 , Michele Rucci1,2 & Marisa Carrasco3,4 Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer is already looking—that is, within the high-acuity foveola, the small yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field. Covert attention is essential for visual perception. Among its many previous studies. We then investigated the consequences of attention advantages, covert allocation of attentional resources increases con- for both detection (experiment 2) and discrimination (experiments trast sensitivity and spatial resolution, speeds information accrual and 3 and 4) tasks within the foveola. reaction times1–4, and alters the signal at the target location during saccade preparation5–7. Covert attention has been studied sometimes RESULTS in the parafovea (1°–5°) and mostly in the perifovea (5°–10°) and Experiment 1 consisted of a central spatial cueing task with para- periphery (>10° of eccentricity)—that is, far outside the foveola, the foveal stimuli (Fig. -
Ocular Surface Changes Associated with Ophthalmic Surgery
Journal of Clinical Medicine Review Ocular Surface Changes Associated with Ophthalmic Surgery Lina Mikalauskiene 1, Andrzej Grzybowski 2,3 and Reda Zemaitiene 1,* 1 Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 44037 Kaunas, Lithuania; [email protected] 2 Department of Ophthalmology, University of Warmia and Mazury, 10719 Olsztyn, Poland; [email protected] 3 Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61553 Poznan, Poland * Correspondence: [email protected] Abstract: Dry eye disease causes ocular discomfort and visual disturbances. Older adults are at a higher risk of developing dry eye disease as well as needing for ophthalmic surgery. Anterior segment surgery may induce or worsen existing dry eye symptoms usually for a short-term period. Despite good visual outcomes, ocular surface dysfunction can significantly affect quality of life and, therefore, lower a patient’s satisfaction with ophthalmic surgery. Preoperative dry eye disease, factors during surgery and postoperative treatment may all contribute to ocular surface dysfunction and its severity. We reviewed relevant articles from 2010 through to 2021 using keywords “cataract surgery”, ”phacoemulsification”, ”refractive surgery”, ”trabeculectomy”, ”vitrectomy” in combina- tion with ”ocular surface dysfunction”, “dry eye disease”, and analyzed studies on dry eye disease pathophysiology and the impact of anterior segment surgery on the ocular surface. Keywords: dry eye disease; ocular surface dysfunction; cataract surgery; phacoemulsification; refractive surgery; trabeculectomy; vitrectomy Citation: Mikalauskiene, L.; Grzybowski, A.; Zemaitiene, R. Ocular Surface Changes Associated with Ophthalmic Surgery. J. Clin. 1. Introduction Med. 2021, 10, 1642. https://doi.org/ 10.3390/jcm10081642 Dry eye disease (DED) is a common condition, which usually causes discomfort, but it can also be an origin of ocular pain and visual disturbances. -
Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma
Investigative Ophthalmology & Visual Science, Vol. 32, No. 3, March 1991 Copyright © Association for Research in Vision and Ophthalmology Retinal Ganglion Cell Loss Is Size Dependent in Experimental Glaucoma Yoseph Glovinsky,* Harry A. Quigley,f and Gregory R. Dunkelbergerf Thirty-two areas located in the temporal midperipheral retina were evaluated in whole-mount prepara- tions from four monkeys with monocular experimental glaucoma. Diameter frequency distributions of remaining ganglion cells in the glaucomatous eye were compared with corresponding areas in the normal fellow eye. Large cells were significantly more vulnerable at each stage of cell damage as determined by linear-regression analysis. The magnitude of size-dependent loss was moderate at an early stage (20% loss), peaked at 50% total cell loss, and decreased in advanced damage (70% loss). In glaucomatous eyes, the lower retina had significantly more large cell loss than the corresponding areas of the upper retina. In optic nerve zones that matched the retinal areas studied, large axons selectively were damaged first. Psychophysical testing aimed at functions subserved by larger ganglion cells is recommended for detection and follow-up of early glaucoma; however, assessment of functions unique to small cells is more appropriate for detecting change in advanced glaucoma. Invest Ophthalmol Vis Sci 32:484-491, 1991 Current psychophysical tests do not detect glau- tage of ideal cellular preservation. Eyes with mild, comatous damage until a substantial minority of reti- moderate, and late damage were evaluated. In addi- nal ganglion cells have died.1'2 To develop more sen- tion, we correlated the damage patterns in the retinas sitive tests, a comprehensive understanding of the and optic nerves of the glaucomatous eyes. -
Jaeger Eye Chart
Jaeger Eye Chart DIRECTIONS FOR USE The Jaeger eye chart (or Jaeger card) is used to test and document near visual acuity at a normal reading distance. Refractive errors and conditions that cause blurry reading vision include astigmatism, hyperopia (farsightedness) and presbyopia (loss of near focusing ability after age 40). If you typically wear eyeglasses or contact lenses full-time, you should wear them during the test. 1. Hold the test card 14 inches from the eyes. Use a tape measure to verify this distance. 2. The card should be illuminated with lighting typical of that used for comfortable reading. 3. Testing usually is performed with both eyes open; but if a significant difference between the two eyes is suspected, cover one eye and test each eye separately. 4. Go to the smallest block of text you feel you can see without squinting, and read that passage aloud. 5. Then try reading the next smaller block of text. (Remember: no squinting!) 6. Continue reading successively smaller blocks of print until you reach a size that is not legible. 7. Record the “J” value of the smallest block of text you can read (example: “J1”). DISCLAIMER: Eye charts measure only visual acuity, which is just one component of good vision. They cannot determine if your eyes are “working overtime” (needing to focus more than normal, which can lead to headaches and eye strain). Nor can they determine if your eyes work properly as a team for clear, comfortable binocular vision and accurate depth perception. Eye charts also cannot detect serious eye problems such as glaucoma or early diabetic retinopathy that could lead to serious vision impairment and even blindness. -
BOSTON TERRIER EYE DISEASE Corneal Ulcers and Prevention
BOSTON TERRIER EYE DISEASE Corneal Ulcers and Prevention Corneal Ulcers are the single largest eye problem in Boston Terriers. Perhaps 1 dog in 10 will experience a corneal ulcer sometime during its life based on the l903 dogs surveyed in the 2000 Boston Terrier Health Survey. The Boston Terrier Standard for the Breed calls for eyes to be “wide apart, large and round and dark in color. The eyes are set square in the skull and the outside corners are on a line with the cheeks as viewed from the front". The ideal Boston Terrier eye does not protrude but is "set square in the skull". Unfortunately the Boston eye is fairly prone to eye injury because of its large size and prominence. Corneal ulcers are caused initially by injury to the eyes. The common practice of removing Boston Terrier whiskers may be a reason that eyes become injured due to lack of sensory feelers. Some breeders do not trim whiskers once a dog's show career is finished because they know that whiskers can prevent injury to the eye. There are a number of external reasons why an injured eye doesn't heal. These may include irritation from eyelashes or from facial hairs, infection, and lack of moisture in the eye. Some of these reasons are hereditary. Internal reasons for an eye not healing include glaucoma and infection. Corneal ulcers can be difficult and expensive to treat and often result in the loss of the eye. This is a case where an "ounce of prevention is worth a pound of cure". -
The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life. -
The Revised Ghent Nosology; Reclassifying Isolated Ectopia Lentis A
The revised ghent nosology; reclassifying isolated ectopia lentis A. Chandra, D. Patel, A. Aragon-Martin, Amélie Pinard, Gwenaëlle Collod-Béroud, C Comeglio, C. Boileau, L. Faivre, D. Charteris, a H Child, et al. To cite this version: A. Chandra, D. Patel, A. Aragon-Martin, Amélie Pinard, Gwenaëlle Collod-Béroud, et al.. The revised ghent nosology; reclassifying isolated ectopia lentis. Clinical Genetics, Wiley, 2015, 87 (3), pp.284-287. 10.1111/cge.12358. hal-01670143 HAL Id: hal-01670143 https://hal.archives-ouvertes.fr/hal-01670143 Submitted on 21 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CLINICAL GENETICS doi: 10.1111/cge.12358 Short Report The revised ghent nosology; reclassifying isolated ectopia lentis Chandra A., Patel D., Aragon-Martin J.A., Pinard A., Collod-Beroud´ G., A. Chandraa,b,c, D. Patela, Comeglio P., Boileau C., Faivre L., Charteris D., Child A.H., Arno G. The J.A. Aragon-Martind, revised ghent nosology; reclassifying isolated ectopia lentis. A. Pinarde,f, Clin Genet 2015: 87: 284–287. © John Wiley & Sons A/S. Published by G. Collod-Beroud´ e,f, John Wiley & Sons Ltd, 2014 P. -
AAO 2018 2019 BCSC Sectio
The American Academy of Ophthalmology is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. The American Academy of Ophthalmology designates this enduring material for a maximum of 15 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. CME expiration date: June 1, 2021. AMA PRA Category 1 Credits™ may be claimed only once between June 1, 2018, and the expiration date. BCSC® volumes are designed to increase the physician’s ophthalmic knowledge through study and review. Users of this activity are encouraged to read the text and then answer the study questions provided at the back of the book. To claim AMA PRA Category 1 Credits™ upon completion of this activity, learners must demonstrate appropriate knowledge and participation in the activity by taking the posttest for Section 3 and achieving a score of 80% or higher. For further details, please see the instructions for requesting CME credit at the back of the book. The Academy provides this material for educational purposes only. It is not intended to represent the only or best method or procedure in every case, nor to replace a physician’s own judgment or give specic advice for case management. Including all indications, contraindications, side eects, and alternative agents for each drug or treatment is beyond the scope of this material. All information and recommendations should be veried, prior to use, with current information included in the manufacturers’ package inserts or other independent sources, and considered in light of the patient’s condition and history. -
Causes of Heterochromia Iridis with Special Reference to Paralysis Of
CAUSES OF HETEROCHROMIA IRIDIS WITH SPECIAL REFER- ENCE TO PARALYSIS OF THE CERVICAL SYMPATHETIC. F. PHINIZY CALHOUN, M. D. ATLANTA, GA. This abstract of a candidate's thesis presented for membership in the American Ophthal- mological Society, includes the reports of cases, a general review of the literature of the sub- ject, the results of experiments, and histologic observations on the effect of extirpation of the cervical sympathetic in the rab'bit, the conclusions reached from the investigation, and a bib- liography. That curious condition which con- thinks that the word hetcrochromia sists in a difference in the pigmentation should apply to those cases in which of the two eyes, is regarded by the parts of the same iris have different casual observer as a play or caprice of colors. In those cases where a cycli- nature. This phenomenon has for cen- tis accompanies the iris decoloration, turies been noted, and was called hcte- Butler8 uses the term "heterochromic roglaucus by Aristotle1. One who cyclitis," but the "Chronic Cyclitis seriously studies the subject, is at once with Decoloration of the Iris" as de- impressed with the complexity of the scribed by Fuchs" undoubtedly gives a situation, and soon learns that nature more accurate description of the dis- plays a comparatively small part in its ease, notwithstanding its long title. causation. It is however only within The commonly accepted and most uni- a comparatively recent time that the versally used term Hetcrochromia Iri- pathologic aspect has been considered, dis exactly expresses and implies the and in this discussion I especially wish picture from its derivation (irtpoa to draw attention to that part played other, xpw/xa) color.