Forschungsbericht 2017-01 A. K. Flock
Total Page:16
File Type:pdf, Size:1020Kb
Forschungsbericht 2017-01 Design and Performance Analysis of Three-Dimensional Air Intakes for Su- personic Combustion Ramjet Engines Andreas K. Flock ISRN DLR-FB--2017-01 Deutsches Zentrum für Luft- und Raumfahrt Institut für Aerodynamik und Strömungstechnik Abteilung Über- und Hyperschalltechnologien Köln ISSN 1434-8454 ISRN DLR-FB--2017-01 A. K. Flock D93 Simultaneously published as doctoral thesis at the Faculty of Aerospace Engineering and Geodesy of the University of Stuttgart. Erscheint gleichzeitig als Dissertation an der Fakultät für Luft- und Raumfahrttechnik und Geodäsie der Universität Stuttgart. Herausgeber Deutsches Zentrum für Luft- und Raumfahrt e. V. Bibliotheks- und Informationswesen D-51170 Köln Porz-Wahnheide Linder Höhe D-51147 Köln Telefon (0 22 03) 6 01 - 44 44 Telefax (0 22 03) 6 01 - 47 47 Als Manuskript gedruckt. Abdruck oder sonstige Verwendung nur nach Absprache mit dem DLR gestattet. ISSN 1434-8454 Hypersonics, Air-Breathing Propulsion, Scramjet, Analytical Intake Design, Supersonic Diffusor, Intake Starting Andreas K. FLOCK Institute of Aerodynamics and Flow Technology within DLR, Supersonic and Hypersonic Technologies Department, Köln, Germany Design and Performance Analysis of Three-Dimensional Air Intakes for Supersonic Combustion Ramjet Engines Doctoral Thesis University of Stuttgart DLR-Forschungsbericht 2017-1, 2017, 153 pages, 105 figures, 14 tables, 119 references, 33.00 € plus taxes The Supersonic Combustion Ramjet (SCRamjet) engine is an efficient propulsion device for supersonic and hypersonic velocities. The present work focuses on the SCRamjet air intake which serves as the engine’s compressor. First, an analytical intake design tool was developed to generate so called streamline traced intake geometries. Second, the starting behavior of hypersonic air intakes was investigated experimentally in a blow down wind tunnel with a three-dimensional intake model with planar surfaces. A semi-empirical estimate was developed to predict intake starting of three-dimensional intake geometries. Third, the three-dimensional intake was further investigated experimentally and results were compared to numerical simulations. Finally, the performance of the three-dimensional intake was compared to the performance of different streamline traced intakes, designed with the analytical tool. Overall, the specific impulse of the streamline traced intakes was approximately 10 % higher compared to the three-dimensional intake configuration. Hyperschall, Luftatmender Antrieb, Scramjet, Analytische Einlaufauslegung, Überschall- diffusor, Einlauf-Startverhalten (Published in English) Andreas K. FLOCK Institut für Aerodynamik und Strömungstechnik des DLR, Abteilung Über- und Hyperschalltechnologien, Köln Auslegung und Leistungscharakterisierung von dreidimensionalen Lufteinläufen für SCRamjet Antriebe Dissertation Universität Stuttgart DLR-Forschungsbericht 2017-1, 2017, 153 Seiten, 105 Bilder, 14 Tabellen, 119 Literatur- stellen, 33,00 € zzgl. MwSt. Der Supersonic Combustion Ramjet (SCRamjet)-Motor ist ein effizienter Antrieb für den Über- und Hyperschallflug. Die vorliegende Arbeit konzentriert sich auf den Lufteinlauf, welcher als Kompressor dient. Zuerst wurde ein analytisches Einlaufauslegeverfahren entwickelt, um so genannte „Streamline-Traced“ Geometrien zu generieren. Als nächstes wurde das Startverhalten von Hyperschalleinläufen anhand eines dreidimensionalen Rampen-Einlaufmodells experimentell in einem Windkanal untersucht. Eine halb-empirische Abschätzung wurde entwickelt um das Startverhalten von dreidimensionalen Einlaufgeometrien vorherzusagen. Weiterhin wurde der Rampen-Einlauf experimentell näher untersucht und Ergebnisse wurden mit numerischen Simulationen verglichen. Zuletzt wurden die Leistungsparameter des Rampen-Einlaufs mit denen von „Streamline-Traced“ Einläufen verglichen. Insgesamt war der spezifische Impuls der „Streamline-Traced“ Einläufe etwa 10% höher verglichen mit den Rampeneinläufen. Forschungsbericht 2017-01 Design and Performance Analysis of Three-Dimensional Air Intakes for Su- personic Combustion Ramjet Engines Andreas K. Flock Deutsches Zentrum für Luft- und Raumfahrt Institut für Aerodynamik und Strömungstechnik Abteilung Über- und Hyperschalltechnologien Köln 153 Seiten 105 Bilder 14 Tabellen 119 Literaturstellen Design and Performance Analysis of Three-Dimensional Air Intakes for Supersonic Combustion Ramjet Engines A thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the University of Stuttgart in partial fulfillment of the requirements for the degree of Doctor of Engineering Sciences (Dr.-Ing.) by Andreas K. Flock born in Schweinfurt, Germany Main Referee: Prof. Dr.-Ing. Ewald Krämer Co-Referee: Prof. Dr.-Ing. Herbert Olivier (RWTH Aachen, Germany) Date of Defense: 18. November 2016 Institute of Aerodynamics and Gas Dynamics University of Stuttgart 2017 Preface I conducted the present work within the Supersonic and Hypersonic Technology Department of the In- stitute of Aerodynamics and Flow Technology at the German Aerospace Center (DLR) Köln. For the opportunity to conduct this work, the outstanding working conditions, and the scientific advice I sin- cerely thank Dr. Ali Gülhan. Furthermore, I thank Prof. Dr. Ewald Krämer for being my main referee, and Prof. Dr. Herbert Olivier for being my co-referee. I am convinced that the expertise of both was essential during the preparation of this manuscript. Next, I would like to thank the entire Supersonic and Hypersonic Technology Department for the great working atmosphere and inspiring discussions held during various opportunities. In particular I would like to thank Marco Schmors and Michael Kosbow for the technical support and advice during the wind tunnel experiments; Dr. Burkard Esser for advice on computer related issues and high temperature effects; Sergej Blem, Dr. Patrick Gruhn, Dr. Dirk Herrmann, and Dr. Oliver Hohn for discussions on air breathing propulsion. Finally, I would like to thank Matthias Koslowski, Dominik Neeb, Dr. Johannes Riehmer, and Dominik Saile for the vivid discussions, great advices, and fruitful comments made in the context of this work and beyond. I also would like to thank the German Research Foundation (DFG) for the funding of the project. As English is not my first language I depended on various editors, which all added to the quality of the manuscript. In this context I would like to thank: Nicolas DeLouise, Sam Duckitt, Dr. Abhinav Krishna, Dr. Siddarth Krishnamoorthy, Angela Pavuk, Amit Roghelia, Jessica Thompson, and Kyle Zienin. Finally, and most importantly, I would like to thank my family and friends, for the granted motivation during the past few years. In particular I would like to thank my parents, who not only supported me during my time at DLR but during my entire life. Last, I would like to thank Antonia for being great! Köln, November 2016 Andreas Flock 3 Contents Preface 3 Contents 5 List of Figures 9 List of Tables 13 Nomenclature 15 Abstract 19 Kurzfassung – German Abstract 21 1 Introduction 23 1.1 Framework – Research Training Group 1095 . 23 1.2 Supersonic Combustion Ramjet Engine . 23 1.2.1 General Description . 23 1.2.2 Fields of Application . 25 1.2.3 Flight Demonstrators . 25 1.3 SCRamjet Intakes . 27 1.3.1 Intake Design . 28 1.3.2 Intake Performance Parameters . 28 1.3.3 Intake Starting . 30 1.4 Objective of Current Work . 30 2 Current Scientific Knowledge 32 2.1 Intake Design . 32 2.1.1 Compression Flow Field . 32 2.1.2 Truncation Effects . 33 2.1.3 Streamline Tracing . 35 2.1.4 Viscous Effects . 35 2.2 Performance Determination . 37 2.2.1 Experimental . 37 2.2.2 Numerical . 37 2.3 Intake Starting . 38 2.3.1 General Research . 38 2.3.2 Self-Starting Intake Configurations . 40 3 Aerodynamic Theory 41 3.1 Fundamentals . 41 3.1.1 Standard Atmosphere . 41 3.1.2 Gas Properties . 41 3.1.3 Quasi One-Dimensional Flow . 41 3.1.4 Oblique and Normal Shock Relations . 42 5 Contents 3.2 Axisymmetric Compression Flow Fields . 43 3.2.1 Taylor McColl Equations . 43 3.2.2 Method of Characteristics . 44 3.3 Boundary Layer Flow . 45 3.3.1 Boundary Layer Equations . 45 3.3.2 Approximate Solution: Approach with Integral Method . 46 3.3.3 Walz’ Integral Method: Rechenverfahren II . 49 4 Intake Design Tool 51 4.1 Overview . 51 4.2 Compression Flow Field . 51 4.2.1 Busemann Flow Field . 52 4.2.2 Reversed Nozzle Flow Field . 53 4.3 Truncation Effects . 54 4.3.1 Leading Edge Truncation Effects . 54 4.3.2 Rear Side Truncation Effects . 55 4.4 Streamline Tracing Algorithm . 56 4.5 Viscous Effects . 57 4.6 Performance Parameters Calculation . 59 5 Intake Starting Prediction 62 5.1 Empirical Relation . 62 5.2 Semi-Empirical Relation . 62 6 Experimental Apparatus and Numerical Methods 66 6.1 Intake Models . 66 6.1.1 3D-GRK Intake . 66 6.1.2 Streamline Traced Intake 1 – ST1 . 68 6.1.3 Streamline Traced Intake 2 – ST2 . 68 6.1.4 Streamline Traced Intake 3 – ST3 . 70 6.2 Blow Down Wind Tunnel H2K . 72 6.3 Complementary Measurement Equipment . 72 6.3.1 Pressure Data Recording . 72 6.3.2 Mach Number Determination . 73 6.3.3 Schlieren Imaging . 74 6.3.4 Throttle System . 74 6.3.5 Temperature Data Recording . 75 6.4 Numerical Simulation . 76 6.4.1 DLR-TAU Software System . 76 6.4.2 Mesh Generation . 76 6.4.3 Mesh Analysis . 76 6.5 One-Dimensional Post-Analysis . 77 6.5.1 Combustion Chamber Model . 79 6.5.2 Nozzle Model . 80 6.6 Averaging . 80 6.6.1 Conventional Averaging . 81 6.6.2 Stream-Thrust Averaging . 81 7 Results 83 7.1 Validation of Approach to Truncation Effects . 83 7.1.1 Leading Edge Truncation . 83 6 Contents 7.1.2 Rear Side Truncation . 88 7.2 Validation of Approach to Viscous Effects . 92 7.2.1 Busemann Flow . ..