Characterization of Microbiologically Influenced Corrosion in Pipelines by Using Metagenomics

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Microbiologically Influenced Corrosion in Pipelines by Using Metagenomics Characterization of microbiologically influenced corrosion in pipelines by using metagenomics Dissertation by Badoor Ali Nasser In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia March, 2019 2 EXAMINATION COMMITTEE PAGE The dissertation of Badoor A. Nasser is approved by the examination committee. Committee Chairperson: Prof. Takashi Gojobori Committee Members: Prof. Stefan Arold , Prof. Susana Agusti , Prof. Magdy Mohamed Gad 3 © March, 2019 Badoor Ali Nasser All Rights Reserved 4 ABSTRACT Characterization of microbiologically influenced corrosion in pipelines by using metagenomics Badoor Ali Nasser Corrosion in pipelines and reservoir tanks in oil plants is a serious problem in the energy industries around the world because it causes a huge economic loss due to not only frequent replacements of the parts of pipelines and tanks but also potential damage of the entire fields of crude oil. Previous studies have revealed that corrosions are generated mainly by microbial activities and they are now called as Microbial Influenced Corrosion (MIC) or simply bio-corrosion. Bacterial species actually causing bio-corrosion is crucial for the suppression of the corrosion. To diagnose and give proper treatment to pipelines in industrial plants, it is essential to identify the bacterial species responsible for bio-corrosions. For attaining at this aim, I conducted an analysis of the microbial community at the corrosion sites in pipelines of oil plants, using the comparative metagenomic analysis along with bioinformatics and statistics. In this study, I collected and analyzed various bio-corrosion samples from four different oil fields. First, I collected samples from the seawater pipelines that are essential in the oil fields to maintain seawater injection system (field#1), and then I conducted the metagenomic analysis of these samples. The metagenomes obtained revealed that samples in both sites contain a wide range of bacterial taxa. However, the comparative 5 analysis of the microbial community with statistics in the comparison between sites with corrosion and without corrosion revealed the presence of microorganisms whose abundances were significantly higher in sites with corrosion. Some of these microbes can be sulfate reducers and sulfur oxidizers of which are considered to be casual agents in recent bio-corrosion models. In addition to the seawater pipelines, I also collect samples from corrosion sites in oil pipelines at Field #2 and #3. My metagenomic analysis combined with statistics showed that several microorganisms are speculated to be very active at the corrosion sites in the oil pipeline. Although biological mechanisms of forming bio-corrosion in the oil pipelines still remain unclear, these microbial species are suggested to be some of the responsible bacteria for bio-corrosion in the oil pipelines. Besides seawater injection systems, groundwater injection systems are often used, especially in inland oil fields. Therefore, more detailed understanding of bio- corrosion in the groundwater injection system is also required in oil industries. In the present studies, I then analyzed the microbial communities in pipelines in the oil field where groundwater is used as injection water (field #4). I collected samples from four different facilities in the field #4. Metagenome analysis revealed that microbial community structures were largely different even among samples from the same facility. Treatments such as biocide and demineralization at each location in the pipeline may affect the microbial communities independently. The results indicated that microbial 6 inspection throughout the pipeline network is important to protect industrial plants from bio-corrosions. Identifying the bacterial species responsible to bio-corrosion, this study provides us with information on bacterial indicators that will be available to classify and diagnose bio-corrosions. Furthermore, these species may be available as biomarkers to detect the events of bio-corrosion at an early stage. Then, any appropriate care such as the appropriate choice of biocides can be taken immediately and appropriately. Thus, my study will provide a platform for obtaining microbial information related to bio-corrosion that enables us to obtain a practical approach to protect them from bio-corrosion. 7 DEDICATION This thesis work is for all those who encouraged me to fly toward my dreams, who deserve to write their names beside mine on the thesis cover. Entesar Hamzah and Ali Nasser They have always loved me unconditionally, Been and still my first and neve last remodel, and taught me to work hard for the things that I desire to achieve. Mom and Dad, thank you for believing in me. To the person how live this journey with me and suffered a lot, my husband Abdualziz Alsharani, who has been a constant source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having you in my life. To my little future scientist my joy and my eldest daughter Future Dr. Jude Al-shahrani and to my little baby my youngest Future Dr. Farah Al-shahrani. you bring out the best in me. You will grow up one day and see what Mom went through while taking care of you and let you know that nothing is impossible as long as you work for your dreams. Your smiley face helped me enjoying every single stage of my research. My brother and sisters: Nisreen, Khalid, Wasna, Sara, and Ghida, You all are part of my success, and I feel proud of being your sister. To my role model in profession life my uncles Amin Al-Nasser and my uncial Hesham Al- 8 Nasser Who been giving me the best advice and always support me unconditionally. I hope one day I can be as passionate, dedicated and inspiration person as you now. With much love to all my friends and my extraordinary family who have shaped my life and helped me believe as long as you believe in God then work hard for your dreams you can achieve it. I am truly thankful for having you in my life. 9 ACKNOWLEDGEMENTS Although only my name appears on the cover of this dissertation, many great people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish forever. Any attempt at any level cannot be completed without the support and guidance of learned people. I would like to express my deepest gratitude to my advisors Prof. Takashi Gojobori , His patience and support helped me overcome many crisis situations to finish this dissertation. They have been always there to listen and give advice, to him I say : ありがとう、先生 Besides my advisor, I would like to thank my mentors: Dr. Katsuhiko Mineta, Dr. Yoshimoto Saito, Mr. Mohammed Alarawi, and my mentor from Aramco , Dr. Abdulmohsen Al Humam. Not only that I am deeply grateful for their insightful comments and encouragement, but also for their continuing support and motivation that have helped me to come up with this dissertation. I really appreciate their help, efforts and the time spent with me to complete this project successfully., A great and sincere gratitude for Prof.Wael Al.Muslimany and Prof.Magdy alsaeed whom I learned the basic of Molecular microbiology from and who helped me take the first step in this wonderful path into my science career. to them I will always be thankful . 10 A very special gratitude goes out to Dr. Ashraf Gassaway who supported me when I first moved to KAUST and started my studies and for the academic support he been given me. Moreover, a big thanks to my friend Yasmeen Aldawsari for helping me to formatting this thesis work . And to Aisha, Amjad, Rasha, Halah and Yasmeen again , my friends and my support system in the dark days. To Muhamad Al-Blueshe, I learned from you a lot of things about Biocides treatment , huge thank you for being there in the toughest time. And to all my colleagues at Comparative Genomics and Genetics group, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST) who were always there provide the best help I could ask for. I really happy that I have been part of this wonderful group. Finally, I would like to thanks Research and Development Center(R&DC), Saudi Aramco, my mentor, supervisor, colleagues and upper management and the career development department not only for giving me this chance to get my PhD here in KAUST and funding this project and provide me with all sample I need but also providing continuous help and support. 11 TABLE OF CONTENTS EXAMINATION COMMITTEE PAGE ............................................................................... 2 ABSTRACT .................................................................................................................... 4 DEDICATION ................................................................................................................ 7 ACKNOWLEDGEMENTS ................................................................................................ 9 TABLE OF CONTENTS ................................................................................................. 11 LIST OF ABBREVIATIONS ............................................................................................ 14 LIST OF FIGURES ........................................................................................................ 15 CHAPTER 1 GENERAL INTRODUCTION .......................................................................
Recommended publications
  • Heat Resistant Thermophilic Endospores in Cold Estuarine Sediments
    Heat resistant thermophilic endospores in cold estuarine sediments Emma Bell Thesis submitted for the degree of Doctor of Philosophy School of Civil Engineering and Geosciences Faculty of Science, Agriculture and Engineering February 2016 Abstract Microbial biogeography explores the spatial and temporal distribution of microorganisms at multiple scales and is influenced by environmental selection and passive dispersal. Understanding the relative contribution of these factors can be challenging as their effects can be difficult to differentiate. Dormant thermophilic endospores in cold sediments offer a natural model for studies focusing on passive dispersal. Understanding distributions of these endospores is not confounded by the influence of environmental selection; rather their occurrence is due exclusively to passive transport. Sediment heating experiments were designed to investigate the dispersal histories of various thermophilic spore-forming Firmicutes in the River Tyne, a tidal estuary in North East England linking inland tributaries with the North Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and enriched bacterial populations were characterised using denaturing gradient gel electrophoresis, functional gene clone libraries and high-throughput sequencing. The distribution of thermophilic endospores among different locations along the estuary was spatially variable, indicating that dispersal vectors originating in both warm terrestrial and marine habitats contribute to microbial diversity in estuarine and marine environments. In addition to their persistence in cold sediments, some endospores displayed a remarkable heat-resistance surviving multiple rounds of autoclaving. These extremely heat-resistant endospores are genetically similar to those detected in deep subsurface environments, including geothermal groundwater investigated from a nearby terrestrial borehole drilled to >1800 m depth with bottom temperatures in excess of 70°C.
    [Show full text]
  • Genome Analysis of Desulfotomaculum Gibsoniae Strain Grollt a Highly Versatile Gram-Positive Sulfate-Reducing Bacterium
    UvA-DARE (Digital Academic Repository) Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram-positive sulfate-reducing bacterium Kuever, J.; Visser, M.; Loeffler, C.; Boll, M.; Worm, P.; Sousa, D.Z.; Plugge, C.M.; Schaap, P.J.; Muyzer, G.; Pereira, I.A.C.; Parshina, S.N.; Goodwin, L.A; Kyrpides, N.C.; Detter, J.; Woyke, T.; Chain, P.; Davenport, K.W.; Rohde, M.; Spring, S.; Klenk, H.-P.; Stams, A.J.M. DOI 10.4056/sigs.5209235 Publication date 2014 Document Version Final published version Published in Standards in Genomic Sciences Link to publication Citation for published version (APA): Kuever, J., Visser, M., Loeffler, C., Boll, M., Worm, P., Sousa, D. Z., Plugge, C. M., Schaap, P. J., Muyzer, G., Pereira, I. A. C., Parshina, S. N., Goodwin, L. A., Kyrpides, N. C., Detter, J., Woyke, T., Chain, P., Davenport, K. W., Rohde, M., Spring, S., ... Stams, A. J. M. (2014). Genome analysis of Desulfotomaculum gibsoniae strain GrollT a highly versatile Gram- positive sulfate-reducing bacterium. Standards in Genomic Sciences, 9(3), 821-839. https://doi.org/10.4056/sigs.5209235 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons.
    [Show full text]
  • A Metagenomic Window Into the 2-Km-Deep Terrestrial Subsurface Aquifer Revealed Multiple Pathways of Organic Matter Decomposition Vitaly V
    FEMS Microbiology Ecology, 94, 2018, fiy152 doi: 10.1093/femsec/fiy152 Advance Access Publication Date: 7 August 2018 Research Article RESEARCH ARTICLE A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition Vitaly V. Kadnikov1, Andrey V. Mardanov1, Alexey V. Beletsky1, David Banks3, Nikolay V. Pimenov4, Yulia A. Frank2,OlgaV.Karnachuk2 and Nikolai V. Ravin1,* 1Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia, 2Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenina prosp. 35, Tomsk, 634050, Russia, 3School of Engineering, Systems Power & Energy, Glasgow University, Glasgow G12 8QQ, and Holymoor Consultancy Ltd., 360 Ashgate Road, Chesterfield, Derbyshire S40 4BW, UK and 4Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp 33-2, Moscow, 119071, Russia ∗Corresponding author: Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia. Tel: +74997833264; Fax: +74991353051; E-mail: [email protected] One sentence summary: metagenome-assembled genomes of microorganisms from the deep subsurface thermal aquifer revealed functional diversity of the community and novel uncultured bacterial lineages Editor: Tillmann Lueders ABSTRACT We have sequenced metagenome of the microbial community of a deep subsurface thermal aquifer in the Tomsk Region of the Western Siberia, Russia. Our goal was the recovery of near-complete genomes of the community members to enable accurate reconstruction of metabolism and ecological roles of the microbial majority, including previously unstudied lineages. The water, obtained via a 2.6 km deep borehole 1-R, was anoxic, with a slightly alkaline pH, and a temperature around 45◦C.
    [Show full text]
  • Department of Microbiology
    SRINIVASAN COLLEGE OF ARTS & SCIENCE (Affiliated to Bharathidasan University, Trichy) PERAMBALUR – 621 212. DEPARTMENT OF MICROBIOLOGY Course : M.Sc Year: I Semester: II Course Material on: MICROBIAL PHYSIOLOGY Sub. Code : P16MB21 Prepared by : Ms. R.KIRUTHIGA, M.Sc., M.Phil., PGDHT ASSISTANT PROFESSOR / MB Month & Year : APRIL – 2020 MICROBIAL PHYSIOLOGY Unit I Cell structure and function Bacterial cell wall - Biosynthesis of peptidoglycan - outer membrane, teichoic acid – Exopolysaccharides; cytoplasmic membrane, pili, fimbriae, S-layer. Transport mechanisms – active, passive, facilitated diffusions – uni, sym, antiports. Electron carriers – artificial electron donors – inhibitors – uncouplers – energy bond – phosphorylation. Unit II Microbial growth Bacterial growth - Phases of growth curve – measurement of growth – calculations of growth rate – generation time – synchronous growth – induction of synchronous growth, synchrony index – factors affecting growth – pH, temperature, substrate and osmotic condition. Survival at extreme environments – starvation – adaptative mechanisms in thermophilic, alkalophilic, osmophilic and psychrophilic. Unit III Microbial pigments and photosynthesis Autotrophs - cyanobacteria - photosynthetic bacteria and green algae – heterotrophs – bacteria, fungi, myxotrophs. Brief account of photosynthetic and accessory pigments – chlorophyll – fluorescence, phosphorescence - bacteriochlorophyll – rhodopsin – carotenoids – phycobiliproteins. Unit IV Carbon assimilation Carbohydrates – anabolism – autotrophy –
    [Show full text]
  • D. Nigrificans and D. Carboxydivorans Are Gram- “Clostridium Nigrificans” by Werkman and Weaver Positive, Sulfate-Reducing, Rod Shaped Bacteria (1927) [2]
    Standards in Genomic Sciences (2014) 9:655-675 DOI:10.4056/sig s.4718645 Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans as a later synonym of Desulfotomaculum nigrificans Michael Visser1, Sofiya N. Parshina2, Joana I. Alves3, Diana Z. Sousa1,3, Inês A. C. Pereira4, Gerard Muyzer5, Jan Kuever6, Alexander V. Lebedinsky2, Jasper J. Koehorst7, Petra Worm1, Caroline M. Plugge1, Peter J. Schaap7, Lynne A. Goodwin8,9, Alla Lapidus10,11, Nikos C. Kyrpides8, Janine C. Detter9, Tanja Woyke8, Patrick Chain 8,9, Karen W. Davenport8, 9, Stefan Spring 12, Manfred Rohde13, Hans Peter Klenk12, Alfons J.M. Stams1,3 1Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands 2Wingradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia 3Centre of Biological Engineering, University of Minho, Braga, Portugal 4Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal 5Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands 6Department of Microbiology, Bremen Institute for Materials Testing, Bremen, Germany 7Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands 8DOE Joint Genome Institute, Walnut Creek, California, USA 9Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 10Theodosius Dobzhansky Center for Genome Bionformatics, St. Petersburg State University, St. Petersburg, Russia 11 Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia 12Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 13HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany Correspondence: Michael Visser ([email protected]) Keywords: Thermophilic spore-forming anaerobes, sulfate reduction, carboxydotrophic, Peptococcaceae, Clostr idiales.
    [Show full text]
  • CO-Dependent Hydrogen Production by the Facultative Anaerobe Parageobacillus Thermoglucosidasius
    Mohr et al. Microb Cell Fact (2018) 17:108 https://doi.org/10.1186/s12934-018-0954-3 Microbial Cell Factories RESEARCH Open Access CO‑dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius Teresa Mohr1,4* , Habibu Aliyu1, Raphael Küchlin1, Shamara Polliack2, Michaela Zwick1, Anke Neumann1, Don Cowan2 and Pieter de Maayer3 Abstract Background: The overreliance on dwindling fossil fuel reserves and the negative climatic efects of using such fuels are driving the development of new clean energy sources. One such alternative source is hydrogen (H­ 2), which can be generated from renewable sources. Parageobacillus thermoglucosidasius is a facultative anaerobic thermophilic bacte- rium which is frequently isolated from high temperature environments including hot springs and compost. Results: Comparative genomics performed in the present study showed that P. thermoglucosidasius encodes two evolutionary distinct ­H2-uptake [Ni-Fe]-hydrogenases and one ­H2-evolving hydrogenases. In addition, genes encod- ing an anaerobic CO dehydrogenase (CODH) are co-localized with genes encoding a putative ­H2-evolving hydroge- nase. The co-localized of CODH and uptake hydrogenase form an enzyme complex that might potentially be involved in catalyzing the water-gas shift reaction (CO ­H2O ­CO2 ­H2) in P. thermoglucosidasius. Cultivation of P. thermo- glucosidasius DSM ­2542T with an initial gas atmosphere+ → of 50%+ CO and 50% air showed it to be capable of growth at elevated CO concentrations (50%). Furthermore, GC analyses showed that it was capable of producing hydrogen at an equimolar conversion with a fnal yield of 1.08 ­H2/CO. Conclusions: This study highlights the potential of the facultative anaerobic P.
    [Show full text]
  • Composition and Function of the Microbiotas in the Different Parts Of
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 117: 352–371, 2020 http://www.eje.cz doi: 10.14411/eje.2020.040 ORIGINAL ARTICLE Composition and function of the microbiotas in the different parts of the midgut of Pyrrhocoris sibiricus (Hemiptera: Pyrrhocoridae) revealed using high-throughput sequencing of 16S rRNA RONGRONG LI 1, *, MIN LI 1 , *, JIANG YAN 1 and HUFANG ZHANG 2, ** 1 Taiyuan Normal University, Jinzhong, Shanxi 030619, China; e-mails: [email protected], [email protected], [email protected] 2 Xinzhou Teachers University, Xinzhou, Shanxi 034000, China; e-mail: [email protected] Key words. Pyrrhocoridae, Pyrrhocoris sibiricus, digestion, gut microbiota, community structure, functional profi ling, next- generation sequencing, 16S rRNA gene Abstract. In pyrrhocorids, digestion of food occurs mainly in the midgut, which is divided into four parts (M1–M4), and takes be- tween three and four days. Food is retained in M1 for about 5 h and passes quickly through M4. However, food is retained in M2 and M3 much longer, about 70 to 90 h. The different stages in digestion may be infl uenced by different microbial populations in the different parts of the midgut. In the present study, the microbiota in the four parts of the midgut of Pyrrhocoris sibiricus were analysed in detail using high-throughput sequencing of the 16S rRNA V3–V4 region. The most abundant bacteria in M3 were Actinobacteria (Coriobacteriaceae) whereas it was Proteobacteria (gammaproteobacteria) in M1, M2 and M4. Actinobacteria was the second most abundant bacterial group in M2. According to the PCA analysis, M2 and M3 have the most similar bacterial com- munities.
    [Show full text]
  • This Is a Pre-Copyedited, Author-Produced Version of an Article Accepted for Publication, Following Peer Review
    This is a pre-copyedited, author-produced version of an article accepted for publication, following peer review. Spang, A.; Stairs, C.W.; Dombrowski, N.; Eme, E.; Lombard, J.; Caceres, E.F.; Greening, C.; Baker, B.J. & Ettema, T.J.G. (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology, 4, 1138–1148 Published version: https://dx.doi.org/10.1038/s41564-019-0406-9 Link NIOZ Repository: http://www.vliz.be/nl/imis?module=ref&refid=310089 [Article begins on next page] The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the Open Access Movement, and the Open Archive Initiative. Each publication should be cited to its original source - please use the reference as presented. When using parts of, or whole publications in your own work, permission from the author(s) or copyright holder(s) is always needed. 1 Article to Nature Microbiology 2 3 Proposal of the reverse flow model for the origin of the eukaryotic cell based on 4 comparative analysis of Asgard archaeal metabolism 5 6 Anja Spang1,2,*, Courtney W. Stairs1, Nina Dombrowski2,3, Laura Eme1, Jonathan Lombard1, Eva Fernández 7 Cáceres1, Chris Greening4, Brett J. Baker3 and Thijs J.G. Ettema1,5* 8 9 1 Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, 10 Uppsala, Sweden 11 2 NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and 12 Biogeochemistry, and Utrecht University, P.O.
    [Show full text]
  • Phylogenetic and Environmental Diversity of Dsrab-Type Dissimilatory (Bi)Sulfite Reductases
    The ISME Journal (2015) 9, 1152–1165 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases Albert Leopold Mu¨ ller1,2, Kasper Urup Kjeldsen3, Thomas Rattei4, Michael Pester5 and Alexander Loy1,2 1Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; 2Austrian Polar Research Institute, Vienna, Austria; 3Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; 4Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Faculty of Life Sciences, University of Vienna, Vienna, Austria and 5Department of Biology, University of Konstanz, Konstanz, Germany The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs.
    [Show full text]
  • Desulfotomaculum Spp. and Related Gram-Positive Sulfate-Reducing Bacteria in Deep Subsurface Environments
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW ARTICLE published: 02 December 2013 doi: 10.3389/fmicb.2013.00362 Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments Thomas Aüllo 1, Anthony Ranchou-Peyruse 1*, Bernard Ollivier 2 and Michel Magot 1 1 Equipe Environnement et Microbiologie, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM UMR 5254), Université de Pau et des Pays de l’Adour, Pau, France 2 Mediterranean Institute of Oceanology (MIO), Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, UM 110, Marseille, France Edited by: Gram-positive spore-forming sulfate reducers and particularly members of the genus Jennifer F.Biddle, University of Desulfotomaculum are commonly found in the subsurface biosphere by culture based Delaware, USA and molecular approaches. Due to their metabolic versatility and their ability to persist Reviewed by: as endospores. Desulfotomaculum spp. are well-adapted for colonizing environments Casey R. J. Hubert, Newcastle University, UK through a slow sedimentation process. Because of their ability to grow autotrophically Mark A. Lever, Aarhus University, (H2/CO2) and produce sulfide or acetate, these microorganisms may play key roles in deep Denmark lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and *Correspondence: related species from studies carried out from deep freshwater
    [Show full text]
  • Genomic Comparisons of a Bacterial Lineage That Inhabits Both Marine and Terrestrial Deep Subsurface Systems
    Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems Sean P. Jungbluth1,2,3, Tijana Glavina del Rio3, Susannah G. Tringe3, Ramunas Stepanauskas4 and Michael S. Rappé5 1 Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States 2 Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, United States 3 DOE Joint Genome Institute, Walnut Creek, CA, United States 4 Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States 5 Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, United States ABSTRACT It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth's crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt- hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of ``Candidatus Desulforudis audaxviator'' MP104C. While a limited number of differences were observed between the marine genome of ``Candidatus Desulfopertinax cowenii'' modA32 and its terrestrial relative that may be of potential adaptive impor- tance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, Submitted 13 November 2016 dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood- Accepted 1 March 2017 Ljungdahl pathway for chemoautotrophic growth.
    [Show full text]
  • View Preprint
    A peer-reviewed version of this preprint was published in PeerJ on 6 April 2017. View the peer-reviewed version (peerj.com/articles/3134), which is the preferred citable publication unless you specifically need to cite this preprint. Jungbluth SP, Glavina del Rio T, Tringe SG, Stepanauskas R, Rappé MS. 2017. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ 5:e3134 https://doi.org/10.7717/peerj.3134 Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems Sean P Jungbluth Corresp., 1, 2 , Tijana Glavina del Rio 3 , Susannah G Tringe 3 , Ramunas Stepanauskas 4 , Michael S Rappé Corresp. 5 1 Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States 2 Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, United States 3 DOE Joint Genome Institute, Walnut Creek, CA, United States 4 Single Cell Genomics Center, Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States 5 Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, United States Corresponding Authors: Sean P Jungbluth, Michael S Rappé Email address: [email protected], [email protected] It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth’s crust. One such lineage of deep subsurface-dwelling Bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of “Candidatus Desulforudis audaxviator” MP104C.
    [Show full text]