Toward Green Processes Organic Synthesis by Catalysis with Metal-Doped Solids

Total Page:16

File Type:pdf, Size:1020Kb

Toward Green Processes Organic Synthesis by Catalysis with Metal-Doped Solids UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Institut de Chimie, UMR 7177 THÈSE présentée par Sophie BORGHÈSE soutenue le : 15 février 2013 pour obtenir le grade de Docteur de l’université de Strasbourg Discipline/ Spécialité : Chimie Organique Toward Green Processes Organic Synthesis by Catalysis with Metal-Doped Solids THÈSE dirigée par : M. PALE Patrick Professeur, Université de Strasbourg RAPPORTEURS : Mme MASSIANI Pascale Directeur de Recherches, Université Pierre et Marie CURIE M. PRAKASH Surya G. K. Professeur, Loker Hydrocarbon Research Institute MEMBRES DU JURY : M. BAATI Rachid Directeur de Recherches, Université de Strasbourg M. EVANO Gwilherm Professeur, Université Libre de Bruxelles Acknowledgements Je tiens tout d’abord à remercier les membres du jury d’avoir accepté de juger ce travail : Mme Pascale Massiani, Mr Surya Prakash, Mr Rachid Baati et Mr Gwilherm Evano. J’adresse mes plus chaleureux remerciements aux deux professeurs qui m’ont choisi pour réaliser cette thèse et qui m’ont accueilli dans leur laboratoire : Patrick Pale et Jean Sommer. Je ressors réellement enrichie d’avoir étudié pendant ces trois années des domaines très divers, choisis ou non, autour de quatre projets différents. Je tiens bien sûr à remercier les encadrants du laboratoire avec qui j’ai – pour la plupart - collaboré sur ces différents sujets et qui m’ont aidé à progresser, humainement et/ou scientifiquement. Je pense au Dr Valérie Bénéteau : merci pour ta présence et ta gentillesse, qui ont été un soutien important tout au long de cette thèse. Merci au Dr Benoît Louis, pour ses enseignements sur la vie et les relations humaines. Merci au Professeur Jean-Marc Weibel (encore désolée!) pour les moments de rigolade – même si j’ai souvent eu du mal à comprendre ton langage ! Enfin, mention spéciale à Mr Aurélien Blanc, avec qui j’ai partagé pendant ces trois années bien plus que de la chimie. La liste est longue et s’étend des identifications de produits par RMN à la customisation de blouse. Ce qui est sûr, c’est que ton caractère bien trempé m’a parfois mis en boule, mais j’ai vraiment apprécié ton honnêteté permanente, une qualité bien rare de nos jours. Merci pour tout ce que tu as fait pour moi professionnellement : mes deux seules publis à ce jour en sont le premier témoignage, et pour l’amitié qu’on a créée autour. Merci à tous les collègues thésards, postdocs et stagiaires, pour l’ambiance agréable et chaleureuse à laquelle ils ont contribuée au labo, et pour les nombreux pots et soirées mémorables qu’on a partagés ensemble : Auré A., Simon, Andrea, Thomas, Guillaume, Béa, Florian, Nico C., Paco, Nico K., Damien, Marilyne, Claire, Julie, Anne-Sophie, Rofia, Ani. Non Matthieu je ne t’ai pas oublié, tu fais définitivement parti de ce labo je pense ! Merci à toi pour les bons moments qu’on a passés cette dernière année. Une pensée particulière à ma petite Marie, dont la présence féminine dans le bureau a été d’un grand secours ! Nos discussions ‘potins’ vont me manquer, c’est sûr ! Merci d’avoir été là pour moi quand j’étais dans la m****, mais aussi pour ta bonne humeur et ton entrain à faire la fête. Au cours de ces trois ans, j’ai eu la nécessité et la chance de partir quatre fois à Los Angeles, et de prendre l’avion pour la première fois de ma vie, pendant 12h. Merci à Jean qui est à l’origine de tout cela. Merci au Loker Institute et au Pr Prakash pour le soutien financier qui m’a été accordé. J’en profite pour remercier également les personnes qui m’ont accueilli là- bas, notamment Alain Goeppert, qui m’a fait découvrir la ville autrement qu’en bus, Robert Aniszfeld, qui s’est toujours montré disponible et efficace, et mes collègues et amis : Miklos, Nan, Clement et Somesh : merci pour ton amitié et pour le road trip à Santa Barbara, inoubliable ! Mes remerciements vont également à ma famille, plus précisément ma maman, mon papa, ma sœur et Philippe. Malgré la distance qui nous sépare depuis maintenant 6 ans, j’ai toujours pu compter sur vous, dans les bons et les moins bons moments. Vos encouragements et votre soutien ont été un bien précieux. Je suis vraiment heureuse d’avoir pu en retour vivre avec vous cette journée de soutenance, un moment de grande joie et de satisfaction, réussi à tous les niveaux. Merci à ma constante, l’une de mes premières rencontres à Strasbourg, avec qui j’ai parcouru à pied un nombre incalculable de fois les ruelles de la Krutenau. Merci pour tous les moments inoubliables vécus depuis ce fameux soir à Amitel. Comme dans notre série préférée, j’espère bien qu’on saura toujours se retrouver et apprécier ces discussions qui nous sont chères, à n’importe quelle époque et dans n’importe quel lieu. Merci à tous les membres du groupe, avec qui j’ai vécu les meilleurs moments de ma vie étudiante pendant ces 6 années à Strasbourg, et qui comptent beaucoup pour moi. On a tellement évolué depuis la première soirée (crêpes !), tout en restant les mêmes, au fond : Juju, toujours insortable, et partant pour les idées les plus barges, Adrien, métrosexuel sosie de Beigbeider, toujours branché, et Le Big, le blond fidèle à lui-même, tellement attachant. Une pensée pour ceux qui sont loin maintenant, et pour ceux qui sont arrivés en cours de route : Carine, Benoît-Jérémy, Nadège, Geoffrey, Yohan, Salomé, Laurence. Les amis, n’oubliez pas que malgré mes défauts, les années et les sorties, je suis restée VOMIT FREE (très important). Merci à ma BF que j’ai enrôlé dans ce groupe, et avec qui j’ai traversé avec plaisir des années et moments intenses à l’ECPM. Tu restes ma BFF, même de l’autre côté de l’Atlantique ! Spéciale dédicace à Mr Bingo, un mec super qui tire aussi bien à la carabine qu’il joue au bad ou fait la galipette, avec qui on rit, mais on rit !! Et surtout qui est devenu un VRAI ami. Merci à la team mayennaise, une vraie bande de cassos, connue depuis peu mais avec qui on se tape des barres de rire à chaque fois, et que j’adore : Léo, Julie, Arnaud, Jocelyn, Vince, Thomas, Caro, Francis, et Estefania. Enfin, un immense merci à celui qui me les a fait connaître, et qui reste le meilleur à mes yeux. Ta patience, ton soutien constant et tes conseils ont été des facteurs directs de ma réussite. Maintenant, c’est fait et j’ai hâte qu’on écrive la suite de nos aventures. Abbreviations and formulas Å Ångström aq aqueous Ac acetyl BEA Beta BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl Boc tert-butyloxycarbonyle i-Bu iso-butyl t-Bu tert-butyl n-BuLi n-butyllithium cat. catalytic amount CDCl3 deuterated chloroform m-CPBA meta-chloroperbenzoic acid DCM dichloromethane DVB divinylbenzene E entgegen EDX Energy-dispersive X-ray ee enantiomeric excess equiv. equivalent Et ethyl Et2O Diethyl ether EtOAc Ethyl acetate EtOH ethanol ESI electrospray ionisation eV electronvolt EWG Electron Withdrawing Group FAU Faujasite FT-IR Fourier-Transformed InfraRed g gram GC Gas Chromatography h hour HMPA Hexamethylphosphoramide HOMO Highest Occupied Molecular Orbital HPA HeteroPoly Acid HRMS High Resolution Mass Spectroscopy Hz Herz J coupling constant LUMO Lowest Uncoccupied Molecular Orbital MAS Magic Angle Spinning Me methyl MeCN acetonitrile MeOH methanol MFI Mordenite Framework Inverted mg milligram min minute mL milliliter mmol millimole mol mole MOR Mordenite MS 4 Å molecular sieves 4 Å NMR Nuclear Magnetic Resonance Ph phenyl PhMe toluene PPh3 triphenylphosphine POM PolyOxoMetalate ppm parts per million Rf retardation factor r.t. room temperature SEM Scanning Electron Microscopy TBAF tert-butyl ammonium fluoride TBS tert-butyldimethylsilyl TBDPS tert-butyldiphenylsilyl TEA triethylamine THF TetraHydroFuran TLC Thin Layer Chromatography USY Ultra Stable Y XRD X-Ray Diffraction ZSM-5 Zeolite Socony Mobil-5 wt% weight % Z zusammen Table of contents General Introduction ................................................................................................................ 3 Chapter 1 : From the use of transition metals in organic synthesis to the development of new heterogeneous catalysts for green chemistry ........................................................ 3 1. Environmental considerations with respect to modern chemical industry ..................... 5 1.1. The Green Chemistry concept ................................................................................ 5 1.2. Important green metrics for assessing environmental impact ................................ 6 2. Importance of transition metals in organic synthesis ..................................................... 8 2.1. Particular properties of coinage metals .................................................................. 9 2.2. Utility of recycling transition metal catalysts ...................................................... 20 3. Heterogeneous catalysts for greener organic transformations ..................................... 22 3.1. Heterogeneization of homogeneous catalysts: the different solid supports ......... 22 3.2. Zeolites ................................................................................................................. 24 3.3. Polyoxometalates ................................................................................................. 44 4. Objectives of the thesis ................................................................................................ 54 4.1. Development of hetereogeneous procedures catalyzed by metal-doped solids ... 54 4.2. Comprehension of the mechanisms of hydrocarbon conversion ......................... 55 Chapter 2 : Activation of small alkanes on solid
Recommended publications
  • 14.8 Organic Synthesis Using Alkynes
    14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 666 666 CHAPTER 14 • THE CHEMISTRY OF ALKYNES The reaction of acetylenic anions with alkyl halides or sulfonates is important because it is another method of carbon–carbon bond formation. Let’s review the methods covered so far: 1. cyclopropane formation by the addition of carbenes to alkenes (Sec. 9.8) 2. reaction of Grignard reagents with ethylene oxide and lithium organocuprate reagents with epoxides (Sec. 11.4C) 3. reaction of acetylenic anions with alkyl halides or sulfonates (this section) PROBLEMS 14.18 Give the structures of the products in each of the following reactions. (a) ' _ CH3CC Na| CH3CH2 I 3 + L (b) ' _ butyl tosylate Ph C C Na| + L 3 H3O| (c) CH3C' C MgBr ethylene oxide (d) L '+ Br(CH2)5Br HC C_ Na|(excess) + 3 14.19 Explain why graduate student Choke Fumely, in attempting to synthesize 4,4-dimethyl-2- pentyne using the reaction of H3C C'C_ Na| with tert-butyl bromide, obtained none of the desired product. L 3 14.20 Propose a synthesis of 4,4-dimethyl-2-pentyne (the compound in Problem 14.19) from an alkyl halide and an alkyne. 14.21 Outline two different preparations of 2-pentyne that involve an alkyne and an alkyl halide. 14.22 Propose another pair of reactants that could be used to prepare 2-heptyne (the product in Eq. 14.28). 14.8 ORGANIC SYNTHESIS USING ALKYNES Let’s tie together what we’ve learned about alkyne reactions and organic synthesis. The solu- tion to Study Problem 14.2 requires all of the fundamental operations of organic synthesis: the formation of carbon–carbon bonds, the transformation of functional groups, and the establish- ment of stereochemistry (Sec.
    [Show full text]
  • S1 Supporting Information Copper-Catalyzed
    Supporting Information Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen Takamichi Wakamatsu, Kazunori Nagao, Hirohisa Ohmiya*, and Masaya Sawamura* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan Table of Contents Instrumentation and Chemicals S1 Characterization Data for Alkynes S1–S2 Procedure for the Copper-Catalyzed Semihydrogenation of Alkynes S2 Characterization Data for Alkenes S3–S5 References S5 NMR Spectra S6–S31 Instrumentation and Chemicals NMR spectra were recorded on a JEOL ECX-400, operating at 400 MHz for 1H NMR and 100.5 13 1 13 MHz for C NMR. Chemical shift values for H and C are referenced to Me4Si and the residual solvent resonances, respectively. Mass spectra were obtained with Thermo Fisher Scientific Exactive, JEOL JMS-T100LP or JEOL JMS-700TZ at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F254. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. Materials were obtained from commercial suppliers or prepared according to standard procedure unless otherwise noted. CuCl was purchased from Aldrich Chemical Co., stored under nitrogen, and used as it is. NatOBu, octane and 6-dodecyne 1a were purchased from TCI Chemical Co., stored under nitrogen, and used as it is. Diphenylacetylene 1j was purchased from Wako Chemical Co., stored under nitrogen, and used as it is. 1,4-Dioxane was purchased from Kanto Chemical Co., distilled from sodium/benzophenone and stored over 4Å molecular sieves under nitrogen.
    [Show full text]
  • The Synthesis of a Polydiacetylene to Create a Novel Sensory Material
    SELDE, KRISTEN A., M.S. The Synthesis of a Polydiacetylene to Create a Novel Sensory Material. (2007) Directed by Dr. Darrell Spells. 47pp. Sensory materials that respond to chemical and mechanical stimuli are under development in many laboratories. There are many significant uses of polydiacetylene compounds as sensory material. They have been applied to drug delivery, drug design, biomolecule development, cosmetics, and national security. In this study, experiments were carried out toward the development of a novel sensory material based on the established synthetic research on polydiacetylene compounds. Synthetic routes toward sensory materials with different head groups, different carbon chains lengths, and the incorporation of molecular imprints were explored. Diacetylene moieties, which can be used for polymer vesicle formation, were prepared by two main routes. In one route, 1-iodo-1-octyne and 1-iodo-1-dodecyne were prepared as starting materials for the synthesis of two diacetylene compounds (Diacetylene I and Diacetylene II). In the other route, a mesityl alkyne was used to prepare 5-iodo-1-pentyne, which was then used to prepare a triethylamino alkyne. This in turn was used to synthesize a diacetylene (Diacetylene III). Although each diacetylene product was formed, purification by column chromatography was found to be difficult. Experiments in vesicle formation, with and without molecular imprints, were also carried out using commercially available diacetylenes . THE SYNTHESIS OF A POLYDIACETYLENE TO CREATE A NOVEL SENSORY
    [Show full text]
  • Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2015 Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica S. Lampkowski College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Lampkowski, Jessica S., "Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids" (2015). Dissertations, Theses, and Masters Projects. Paper 1539626985. https://dx.doi.org/doi:10.21220/s2-r9jh-9635 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica Susan Lampkowski Ida, Michigan B.S. Chemistry, Siena Heights University, 2013 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Chemistry Department The College of William and Mary May, 2015 COMPLIANCE PAGE Research approved by Institutional Biosafety Committee Protocol number: BC-2012-09-13-8113-dyoung01 Date(s) of approval: This protocol will expire on 2015-11-02 APPROVAL PAGE This
    [Show full text]
  • Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides
    Top Curr Chem (Z) (2016) 374:16 DOI 10.1007/s41061-016-0016-4 REVIEW Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides 1 1 Jan Dommerholt • Floris P. J. T. Rutjes • Floris L. van Delft2 Received: 24 November 2015 / Accepted: 17 February 2016 / Published online: 22 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A nearly forgotten reaction discovered more than 60 years ago—the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole—enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bio- conjugation tool, the usefulness of cyclooctyne–azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide–alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more. In this chapter, a brief historic overview of cycloalkynes is provided first, along with the main synthetic strategies to prepare cycloalkynes and their chemical reactivities. Core aspects of the strain-promoted reaction of cycloalkynes with azides are covered, as well as tools to achieve further reaction acceleration by means of modulation of cycloalkyne structure, nature of azide, and choice of solvent. Keywords Strain-promoted cycloaddition Á Cyclooctyne Á BCN Á DIBAC Á Azide This article is part of the Topical Collection ‘‘Cycloadditions in Bioorthogonal Chemistry’’; edited by Milan Vrabel, Thomas Carell & Floris P.
    [Show full text]
  • A. Discovery of Novel Reactivity Under the Sonogashira Reaction Conditions B. Synthesis of Functionalized Bodipys and BODIPY-Sug
    A. Discovery of novel reactivity under the Sonogashira reaction conditions B. Synthesis of functionalized BODIPYs and BODIPY-sugar conjugates Ravi Shekar Yalagala, M.Phil Department of Chemistry Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2016 ABSTRACT A. During our attempts to synthesize substituted enediynes, coupling reactions between terminal alkynes and 1,2-cis-dihaloalkenes under the Sonogashira reaction conditions failed to give the corresponding substituted enediynes. Under these conditions, terminal alkynes underwent self-trimerization or tetramerization. In an alternative approach to access substituted enediynes, treatment of alkynes with trisubstituted (Z)- bromoalkenyl-pinacolboronates under Sonogashira coupling conditions was found to give 1,2,4,6-tetrasubstituted benzenes instead of Sonogashira coupled product. The reaction conditions and substrate scopes for these two new reactions were investigated. B. BODIPY core was functionalized with various functional groups such as nitromethyl, nitro, hydroxymethyl, carboxaldehyde by treating 4,4-difluoro-1,3,5,7,8- pentamethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene with copper (II) nitrate trihydrate under different conditions. Further, BODIPY derivatives with alkyne and azido functional groups were synthesized and conjugated to various glycosides by the Click reaction under the microwave conditions. One of the BODIPY–glycan conjugate was found to form liposome upon rehydration. The photochemical properties of BODIPY in these liposomes were characterized by fluorescent confocal microscopy. ii ACKNOWLEDGEMENTS I am extremely grateful to a number of people. Without their help, this document would have never been completed. First and foremost, I would like to thank my supervisor and mentor Professor Tony Yan for his guidance and supervision to make the thesis possible.
    [Show full text]
  • Indolizidines and Quinolizidines: Natural Products and Beyond
    Indolizidines and quinolizidines: natural products and beyond Edited by Joseph Philip Michael Generated on 05 October 2021, 08:24 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Indolizidines and quinolizidines: natural products and beyond Joseph P. Michael Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 27. Molecular Sciences Institute, School of Chemistry, University of the doi:10.1186/1860-5397-3-27 Witwatersrand, PO Wits 2050, South Africa Received: 24 September 2007 Email: Accepted: 26 September 2007 Joseph P. Michael - [email protected] Published: 26 September 2007 © 2007 Michael; licensee Beilstein-Institut. License and terms: see end of document. Alkaloids occur in such astonishing profusion in nature that amphibians. [5,6] It is thus hardly surprising that both the struc- one tends to forget that they are assembled from a relatively tural elucidation and the total synthesis of these and related small number of structural motifs. Among the motifs that are alkaloids continue to attract the attention of eminent chemists, most frequently encountered are bicyclic systems containing as borne out by the seemingly inexhaustible flow of publica- bridgehead nitrogen, especially 1-azabicyclo[4.3.0]nonanes and tions in prominent journals.
    [Show full text]
  • Odor and Flavor Responses to Additives in Edible Oils 1
    2988 Reprinted from the JOURNAL OF THE AMERICA.." OIL CHEMISTS' SOCIETY, Vol. 48, No.9, Pages: 495-498 (1971) "Purchased by U.S. Department of Agriculture for Official Use." Odor and Flavor Responses to Additives in Edible Oils 1 C.D. EVANS, HELEN A. MOSER and G.R. LIST, Northern Regional Research LaboratorY,2 Peoria, Illinois 61604 ABSTRACT pounds, including unsaturated esters, ketones, alcohols and The odor threshold was determined for a series of hydrocarbons, arose from hydroperoxide breakdown and unsaturated ketones, secondary alcohols, hydro­ could contribute to an autoxidized flavor. In the past carbons and substituted furans added to bland edible decade both vinyl amyl ketone and vinyl ethyl ketone oil. Odor thresholds were taken as the point where (9-11) and their alcohol counterparts (5,9,12) have been 50% of a 15- to 18-member taste panel could detect isolated from autoxidized fats and shown to contribute an odor difference from the control oil. These undesirable flavor components. additives are oxidative products of fats, but the Although various hydrocarbons have been isolated from concentrations investigated were far below any level autoxidized and irradiated fats, they reportedly have associated with an identifying odor or taste of the generally weak flavors. Forss (3) indicates contamination additive per se. Odor, rather than flavor, was selected with alcohols or mercaptans as the source of hydrocarbon as the starting basis because of greater acuity and ease flavor. Smouse et al. (13) demonstrated that I-decyne was a of handling a large number of samples with less taster major component in the volatile products of slightly fatigue.
    [Show full text]
  • 4-(Phenylsulfonyl) Butanoic Acid: Preparation, Dianion Generation
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1990 4-(Phenylsulfonyl) Butanoic Acid: Preparation, Dianion Generation, and Application to Four Carbon Chain Extension ; Studies of Organophosphorus Compounds Derived from Serine Jeffrey A. Frick Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Chemistry Commons Recommended Citation Frick, Jeffrey A., "4-(Phenylsulfonyl) Butanoic Acid: Preparation, Dianion Generation, and Application to Four Carbon Chain Extension ; Studies of Organophosphorus Compounds Derived from Serine" (1990). Dissertations. 3163. https://ecommons.luc.edu/luc_diss/3163 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1990 Jeffrey A. Frick I. 4-(PHENYLSULFONYL)BUTANOIC ACID. PREPARATION, DIANION GENERATION, AND APPLICATION TO FOUR CARBON CHAIN EXTENSION II. STUDIES OF ORGANOPHOSPHORUS COMPOUNDS DERIVED FROM SERINE by Jeffrey A. Frick A Dissertation Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy June 1990 ACKNOWLEDGMENTS The author wishes to express his deepest thanks to Dr. Charles Thompson for his enthusiasm, his support, and his friendship; all of which made this work possible. Thanks are expressed to the members of the Dissertation Committee: Dr. Albert Herlinger, Dr. Kenneth Olsen, Prof. James Babler, and Prof. John Cashman, for their willingness to serve in this capacity.
    [Show full text]
  • Gfsorganics & Fragrances
    Chemicals for Flavors GFSOrganics & Fragrances GFS offers a broad range of specialty organic chemicals Specialized chemistries we as building blocks and intermediates for the manufacture of offer include: flavors and fragrances. • Alkynes Over 5,500 materials, including 1,400 chemicals from natural sources, are used for flavor • Alkynols enhancements and aroma profiles. These aroma chemicals are integral components of • Olefins the continued growth within consumer products and packaged foods. The diversity of products can be attributed to the broad spectrum of organic compounds derived from • Unsaturated Acids esters, aldehydes, lactones, alcohols and several other functional groups. • Unsaturated Esters • DIPPN and other Products GFS Chemicals manufactures a wide range of organic intermediates that have been utilized in a multitude of personal care applications. For example, we support Why GFS? several market leading companies in the manufacture and supply of alkyne based aroma chemicals. • Specialized Chemistries • Tailored Specifications As such, we understand the demanding nature of this fast changing market and are fully • From Grams to Metric Tons equipped to overcome process challenges and manufacture the novel chemical products • Responsive Technical Staff that you need, when you need them. We offer flexible custom manufacturing services to produce high purity products with the assurance of quality and full confidentiality. • Uncompromised Product Quality Our state-of-the-art manufacturing facility, located in Columbus, OH is ISO 9001:2008 certified. As a U.S. based manufacturer we have a proven record of helping you take products from development to commercialization. Our technical sales experts are readily accessible to discuss your project needs and unique product specifications.
    [Show full text]
  • Développement De Réactions D'hydratation D'alcynes Possédant Un Groupement Fluoré À La Position Propargylique Catalysées À L'or
    Développement de réactions d'hydratation d'alcynes possédant un groupement fluoré à la position propargylique catalysées à l'or Mémoire Mélissa Cloutier Maîtrise en chimie - avec mémoire Maître ès sciences (M. Sc.) Québec, Canada © Mélissa Cloutier, 2019 Développement de réactions d’hydratation d’alcynes possédant un groupement fluoré à la position propargylique catalysées à l’or Mémoire Mélissa Cloutier Sous la direction de : Jean-François Paquin Résumé La catalyse à l’or a retenu l’attention ces dernières années à cause de la capacité de cet atome d’activer les alcynes en vue d’une attaque nucléophile, dans des conditions douces, en présence d’autres groupements fonctionnels. Des effets relativistes seraient à l’origine de certaines propriétés uniques de l’or. Si le produit de Markovnikov est généralement obtenu lorsque la réaction d’addition est effectuée sur des alcynes terminaux, l’utilisation d’alcynes internes mène à la formation de régioisomères. Ce problème de régiosélectivité peut être, complètement ou partiellement, résolu en utilisant, entre autres, des groupements électroattracteurs à l’une des positions propargyliques. Dans le cadre de ses travaux, la réactivité de substrats portant un groupement fluoré en position propargylique a été explorée. Ici, l’attaque nucléophile se fera de manière préférentielle au carbone de l’alcyne distal du groupement fluoré, faisant office de groupement électroattracteur. Le premier projet porte sur la réaction d’hydratation d’alcynes trifluorométhylés et pentafluorosulfanylés catalysée à l’or pour la formation de cétone α-CF3 et α-SF5, respectivement. Les groupements fluorés, étant électroattracteurs, jouent le rôle du groupement directeur pour ces transformations et mènent à l’obtention d’un seul régioisomère.
    [Show full text]
  • Chemical in Baobab (Adansonia Digitata) from Sudan
    Vol. 14(21), pp. 907-914, 23 May, 2019 DOI: 10.5897/AJAR2019.13862 Article Number: 83F45A861057 ISSN: 1991-637X Copyright ©2019 African Journal of Agricultural Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Research Full Length Research Paper Identification of 1-decyne as a new volatile allele- chemical in baobab (Adansonia digitata) from Sudan Hala Sad Alla Maliek Elmadni1,2, Maryia Mishyna1,3 and Yoshiharu Fujii1,2* 1Department of International Environmental and Agricultural Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 183-8509 Tokyo, Japan. 2Department of General Administration of technology Transfer and Extension, Federal Ministry of Agriculture and Forest, 461 Khartoum, Sudan. 3School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China. Received 3 January, 2019; Accepted 19 April, 2019 Leaf, fruit, wood, and gum of fifty-five plants collected in Sudan were evaluated by Dish pack method for their allelopathic activity through volatile chemicals using lettuce (Lactuca sativa) as a receptor plant. Several potential plants with high allelopathic activity, such as Terminalia brownie, Euphorbia hirta, Diospyros mespiliformis, Corchorus olitorius, Adansonia digitata, Hibiscus sabdariffa, were determined. Baobab (A. digitata) leaves demonstrated relatively higher inhibition (23.9 and 21.5% of hypocotyl and radicle, respectively) than most of the screened plant species. Identification of the volatile compounds using headspace gas chromatography-mass spectrometry revealed 1-decyne as the main volatile compound naturally released from dried baobab leaves. EC50 (50% growth inhibition) of radicle and hypocotyl growth of lettuce seedlings by authentic 1-decyne was determined in the headspace air using by GC-MS with Cotton Swab method at the concentration of 0.5 ng/ml.
    [Show full text]