A. Discovery of Novel Reactivity Under the Sonogashira Reaction Conditions B. Synthesis of Functionalized Bodipys and BODIPY-Sug

Total Page:16

File Type:pdf, Size:1020Kb

A. Discovery of Novel Reactivity Under the Sonogashira Reaction Conditions B. Synthesis of Functionalized Bodipys and BODIPY-Sug A. Discovery of novel reactivity under the Sonogashira reaction conditions B. Synthesis of functionalized BODIPYs and BODIPY-sugar conjugates Ravi Shekar Yalagala, M.Phil Department of Chemistry Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2016 ABSTRACT A. During our attempts to synthesize substituted enediynes, coupling reactions between terminal alkynes and 1,2-cis-dihaloalkenes under the Sonogashira reaction conditions failed to give the corresponding substituted enediynes. Under these conditions, terminal alkynes underwent self-trimerization or tetramerization. In an alternative approach to access substituted enediynes, treatment of alkynes with trisubstituted (Z)- bromoalkenyl-pinacolboronates under Sonogashira coupling conditions was found to give 1,2,4,6-tetrasubstituted benzenes instead of Sonogashira coupled product. The reaction conditions and substrate scopes for these two new reactions were investigated. B. BODIPY core was functionalized with various functional groups such as nitromethyl, nitro, hydroxymethyl, carboxaldehyde by treating 4,4-difluoro-1,3,5,7,8- pentamethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene with copper (II) nitrate trihydrate under different conditions. Further, BODIPY derivatives with alkyne and azido functional groups were synthesized and conjugated to various glycosides by the Click reaction under the microwave conditions. One of the BODIPY–glycan conjugate was found to form liposome upon rehydration. The photochemical properties of BODIPY in these liposomes were characterized by fluorescent confocal microscopy. ii ACKNOWLEDGEMENTS I am extremely grateful to a number of people. Without their help, this document would have never been completed. First and foremost, I would like to thank my supervisor and mentor Professor Tony Yan for his guidance and supervision to make the thesis possible. I really appreciate his patience, help and support throughout this thesis work. He treated me with great patience so that I have learned a lot in the lab throughout the years. I could not have imagined having a better advisor and mentor for my graduate study. I would like to extend my gratitude to other members of my committee, Professor Costa Metallinos, Professor Art van der East for their support over the year and for their valuable advice and insightful comments. I thank Tim Jones, Liqun Qiu and Razvan Simionescu for their assistance in collecting data for mass spectrometry and NMR spectroscopy. I also thanks Prof. Jeff Stuart and Lucas Anthony Maddalena for their assistance in collecting data from fluorescence microscope. My sincere thanks also go to my past and current fellow labmates: Ningzhang Zhou, Qiang Wang, Dhruval Joshi, Jia Li, and Nazanin Heidari, Viola, Fatma Elijabu, Emily Bordeleau, Sina Mazinani, Christopher Oberc, David Nguyen, Meesook Jun, Khatma Ali for the stimulating discussions and all the fun we have had. I specially thank few people I met in Brock University, Ningzhang Zhou, Mikel, Christopher, Sina, and another friend Thirupathi (University of Michigan) with whom I gained lots of knowledge due to the stimulating discussions we had. Special thanks to Saba Pirnia for being a great friend who brought up engaging conversations on variety of chemistry/biology topics and memorable friendship. iii I would like to thank the Natural Sciences and Engineering Research Council of Canada for funding this work. I would like to thank the Government of Ontario for the Trillium scholarship for pursuing my Ph.D. Words cannot express how grateful I am to my parents, brother and wife. Their love provided me inspiration and driving force, without their support finishing this journey was not possible. iv TABLE OF CONTENTS ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS v LIST OF TABLES vii LIST OF FIGURES ix LIST OF SCHEMES xi LIST OF ABBREVIATIONS xiv Chapter 1 1.1 Enediyne-containing natural products 2 1.2 Mechanism of action of enediynes 4 1.3 Synthetically prepared enediynes and their biological activities 7 1.4 Potential of enediyne as site-specific DNA cutters 18 1.5 General perspectives and objectives of this project 20 1.5.1 Synthesis and conjugation of enediyne functionality to oligo- 20 nucleotides 1.5.2 Investigation of the self-oligomerization of terminal alkyne 22 1.5.3 Reaction between (Z)-bromoalkenylpinacol boronates and terminal 22 alkyne Chapter 2 2.1 Introduction to fluorophores 24 2.2 BODIPY as a fluorophore 26 2.3 Methodologies for the synthesis of BODIPY 27 2.4 Functionalization of the BODIPY core 29 2.4.1 Electrophilic substitution reactions 29 v 2.4.2 Nucleophilic substitutions of halogenated BODIPYs 33 2.4.3 Palladium catalyzed functionalization of BODIPY compounds 36 2.4.4 Condensation reactions 38 2.4.5 C-H activation 38 2.5 Functional groups on the BODIPY core for conjugation purposes 41 2.5.1 Succinimidyl esters 42 2.5.2 Isothiocyanate BODIPY dyes 43 2.5.3 Iodoacetamide BODIPY dyes 45 2.5.4 Maleimide BODIPY dyes 46 2.5.5 Thiosulfate and thiosulfonate BODIPY dyes 49 2.6. Bio-orthogonal labeling of biomolecules 51 2.6.1 BODIPY-hydrazine, hydrazide or aminooxy compounds 51 2.6.2 Azide alkyne click reaction 54 2.6.3 Tetrazene-alkene click reaction 56 2.7 General perspectives and objectives of the present work 58 Chapter 3 3.1 Homotrimerization and tetramerization of terminal alkynes 60 3.1.1. Synthesis of the designed substituted enediynes 62 3.1.2 Homocoupling of terminal alkynes 65 3.1.3 Optimization of the reaction conditions for the self-trimerization of 67 terminal alkynes 3.1.4 Exploring the substrate scope for the self-trimerization of terminal 69 alkynes 3.1.5 Characterization of the trimerized alkyne products by NOE and 71 HMBC NMR spectroscopy 3.1.6 Conclusion 73 3.2 Reactions of terminal alkynes with trisubstituted (Z)-bromoalkenyl 74 pinacol boronates towards the synthesis of 1,2,4,6-tetrasubstituted benzenes vi 3.2.1 Synthesis of pinacolboronate and bromoalkene 74 3.2.2 Optimization of the reaction conditions for the aromatization 76 reaction 3.2.3 Exploring the substrate scope for the aromatization reaction 78 3.2.4 Mechanistic investigations of the aromatization reaction between a 80 bromoalkene boronate and an alkyne 3.2.5 Conclusion 82 3.3 Reactions of BODIPY with cupric nitrate 83 3.3.1 Various transformations of BODIPY with Cu(NO3)2•3H2O 83 3.3.2 Optimization of the reaction conditions for the synthesis of 3-nitro 85 BODIPY 174b 3.3.3 Conclusion 88 3.4 Microwave-assisted synthesis of BODIPY-sugar conjugates through 89 Click chemistry and assembly of the conjugate into liposomes 3.4.1 Synthesis of BODIPY derivatives with alkyne and azido functional 90 groups 3.4.2 Synthesis of BODIPY-sugar conjugates through click reaction 91 3.4.3 Formation of liposomes by the BODIPY-sugar conjugate 94 3.4.4 Conclusion 97 Chapter 4 4.1 General Experimental Procedures 99 4.2 Detailed Experimental Procedures 100 5. References 140 vii LIST OF TABLES Table 3-1: Optimization of reaction conditions described in Scheme 3- 67 2B Table 3-2: Homocoupling products of terminal alkynes 70 Table 3-3: Optimization of aromatization conditions 77 Table 3-4: Substrate scope of the aromatization reaction 79 Table 3-5: Optimization of conditions for the synthesis of 3-nitro 86 BODIPY 65b viii LIST OF FIGURES Figure 1-1: Natural enediyne compounds 3 Figure 1-2: Bergman cyclization 4 Figure 1-3: Structure of calicheamicin 5 Figure 1-4: The activation and DNA cleavage mechanism of Calicheamicin 5 Figure 1-5: DNA cleavages by abstracting the 5’-H of sugar backbone 6 Figure 1-6: First generation of synthetic enediynes 8 Figure 1-7: Enediynes with substituted amine and the corresponding 9 cyclization temperature Figure 1-8: Enediynes with aromatic and hetero aromatic substitutions 10 Figure 1-9: Enediynes with a hydroxyl side chain 11 Figure 1-10: Analogues of dynemycin 15 Figure 1-11: Covalent bond formation between DNA and a PBD 16 Figure 1-12: PBDs conjugated enediynes 17 Figure 1-13: Enediynes with similar structure of Combretastatin 18 Figure 1-14: EDTA conjugated oligo nucleotide 19 Figure 1-15: EDTA containing thymidine 20 Figure 2-1: Structures of fluorescent dyes 25 Figure 2-2: Numbering scheme for BODIPY framework derived from 26 indacene Figure 2-3: Commercially available BODIPY probes from Molecular Probes 27 Figure 2-4: Mesomeric structures of BODIPY core 29 Figure 3-1: Cleavage of target DNA by enediyne 60 Figure 3-2: Designed enediyne phosphoramidite 61 Figure 3-3: Possible structures of trimerized product 152 b 71 Figure 3-4: 1D NMR spectra of compound 152 b in DMSO-d6 72 ix Figure 3-5: HMBC spectrum of compound 152b in DMSO-d6 72 Figure 3-6: Bromoboronate alkene designed for sequential Sonogashira and 74 Suzuki coupling reactions Figure 3-7: Products generated in the aromatization reactions with various 80 alkene and alkyne substrates Figure 3-8: Two intermediates isolated in the aromatization reaction 81 Figure 3-9: Glycans with either an alkyne or azide 89 Figure 3-10: NOESY spectra of click reaction product 94 Figure 3-11: A cartoon illustrating the bilayer formed by the BODIPY–sugar 95 conjugates in aqueous solutions Figure 3-12: Bright field microscope image of a cluster of liposomes 96 formed from BODIPY-conjugate of sugar 185 x LIST OF SCHEMES Scheme 1-1: Enediynes with phosphine ligands 12 Scheme 1-2: Enendiynes with bypiridyl ligands 13 Scheme 1-3: DNA cleavages by photo enediyne activated by deprotection of 14 a photolabile amino protecting
Recommended publications
  • 14.8 Organic Synthesis Using Alkynes
    14_BRCLoudon_pgs4-2.qxd 11/26/08 9:04 AM Page 666 666 CHAPTER 14 • THE CHEMISTRY OF ALKYNES The reaction of acetylenic anions with alkyl halides or sulfonates is important because it is another method of carbon–carbon bond formation. Let’s review the methods covered so far: 1. cyclopropane formation by the addition of carbenes to alkenes (Sec. 9.8) 2. reaction of Grignard reagents with ethylene oxide and lithium organocuprate reagents with epoxides (Sec. 11.4C) 3. reaction of acetylenic anions with alkyl halides or sulfonates (this section) PROBLEMS 14.18 Give the structures of the products in each of the following reactions. (a) ' _ CH3CC Na| CH3CH2 I 3 + L (b) ' _ butyl tosylate Ph C C Na| + L 3 H3O| (c) CH3C' C MgBr ethylene oxide (d) L '+ Br(CH2)5Br HC C_ Na|(excess) + 3 14.19 Explain why graduate student Choke Fumely, in attempting to synthesize 4,4-dimethyl-2- pentyne using the reaction of H3C C'C_ Na| with tert-butyl bromide, obtained none of the desired product. L 3 14.20 Propose a synthesis of 4,4-dimethyl-2-pentyne (the compound in Problem 14.19) from an alkyl halide and an alkyne. 14.21 Outline two different preparations of 2-pentyne that involve an alkyne and an alkyl halide. 14.22 Propose another pair of reactants that could be used to prepare 2-heptyne (the product in Eq. 14.28). 14.8 ORGANIC SYNTHESIS USING ALKYNES Let’s tie together what we’ve learned about alkyne reactions and organic synthesis. The solu- tion to Study Problem 14.2 requires all of the fundamental operations of organic synthesis: the formation of carbon–carbon bonds, the transformation of functional groups, and the establish- ment of stereochemistry (Sec.
    [Show full text]
  • Sonogashira Coupling Reaction in Water Using a Polymer-Supported Terpyridine–Palladium Complex Under Aerobic Conditions
    Trans. Mat. Res. Soc. Japan 40[2] 103-106 (2015) Sonogashira Coupling Reaction in Water Using a Polymer-Supported Terpyridine–Palladium Complex under Aerobic Conditions Toshimasa Suzuka,* Mika Adachi, and Kazuhito Ogihara Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara Okinawa 903-0213, Japan Fax: 81-098-895-8531, e-mail: [email protected] The palladium-catalyzed coupling reaction between an aryl halide and a terminal alkyne, the so-called Sonogashira coupling reaction, was found to occur in water under copper-free conditions using an amphiphilic polystyrene–poly(ethylene glycol) (PS-PEG) resin-supported palladium–terpyridine complex, giving the corresponding aryl-substituted alkyne in high yield. The PS-PEG resin-supported palladium–terpyridine catalyst was recovered simply by filtering the product mixture under air and could be reused three times with only slightly decreased catalytic activity after each use. Key words: Sonogashira, palladium, terpyridine, water, cross-coupling 1. INTRODUCTION organic solvent or metal-contaminated wastes are The palladium-catalyzed coupling reaction produced; and (2) the presence of oxygen and between an aryl halide and a terminal alkyne, the moisture do not negatively affect the reaction. so-called Sonogashira reaction [1], is recognized These benefits therefore allow the Sonogashira as being the most successful method for forming coupling reaction to be performed meeting the an sp2 carbon–sp3 carbon bond. Since its requirements of “green chemistry”. discovery by Sonogashira and co-workers in 1975, a vast amount of research has been performed cat 1. ( 5mol% Pd) into its synthetic applications and on improving X + R1 R1 the reaction efficiency [2].
    [Show full text]
  • S1 Supporting Information Copper-Catalyzed
    Supporting Information Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen Takamichi Wakamatsu, Kazunori Nagao, Hirohisa Ohmiya*, and Masaya Sawamura* Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan Table of Contents Instrumentation and Chemicals S1 Characterization Data for Alkynes S1–S2 Procedure for the Copper-Catalyzed Semihydrogenation of Alkynes S2 Characterization Data for Alkenes S3–S5 References S5 NMR Spectra S6–S31 Instrumentation and Chemicals NMR spectra were recorded on a JEOL ECX-400, operating at 400 MHz for 1H NMR and 100.5 13 1 13 MHz for C NMR. Chemical shift values for H and C are referenced to Me4Si and the residual solvent resonances, respectively. Mass spectra were obtained with Thermo Fisher Scientific Exactive, JEOL JMS-T100LP or JEOL JMS-700TZ at the Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F254. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) was used for column chromatography. Materials were obtained from commercial suppliers or prepared according to standard procedure unless otherwise noted. CuCl was purchased from Aldrich Chemical Co., stored under nitrogen, and used as it is. NatOBu, octane and 6-dodecyne 1a were purchased from TCI Chemical Co., stored under nitrogen, and used as it is. Diphenylacetylene 1j was purchased from Wako Chemical Co., stored under nitrogen, and used as it is. 1,4-Dioxane was purchased from Kanto Chemical Co., distilled from sodium/benzophenone and stored over 4Å molecular sieves under nitrogen.
    [Show full text]
  • The Synthesis of a Polydiacetylene to Create a Novel Sensory Material
    SELDE, KRISTEN A., M.S. The Synthesis of a Polydiacetylene to Create a Novel Sensory Material. (2007) Directed by Dr. Darrell Spells. 47pp. Sensory materials that respond to chemical and mechanical stimuli are under development in many laboratories. There are many significant uses of polydiacetylene compounds as sensory material. They have been applied to drug delivery, drug design, biomolecule development, cosmetics, and national security. In this study, experiments were carried out toward the development of a novel sensory material based on the established synthetic research on polydiacetylene compounds. Synthetic routes toward sensory materials with different head groups, different carbon chains lengths, and the incorporation of molecular imprints were explored. Diacetylene moieties, which can be used for polymer vesicle formation, were prepared by two main routes. In one route, 1-iodo-1-octyne and 1-iodo-1-dodecyne were prepared as starting materials for the synthesis of two diacetylene compounds (Diacetylene I and Diacetylene II). In the other route, a mesityl alkyne was used to prepare 5-iodo-1-pentyne, which was then used to prepare a triethylamino alkyne. This in turn was used to synthesize a diacetylene (Diacetylene III). Although each diacetylene product was formed, purification by column chromatography was found to be difficult. Experiments in vesicle formation, with and without molecular imprints, were also carried out using commercially available diacetylenes . THE SYNTHESIS OF A POLYDIACETYLENE TO CREATE A NOVEL SENSORY
    [Show full text]
  • Advances in Cross-Coupling Reactions
    molecules Editorial Advances in Cross-Coupling Reactions José Pérez Sestelo * and Luis A. Sarandeses * Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain * Correspondence: [email protected] (J.P.S.); [email protected] (L.A.S.); Tel.: +34-881-012-041 (J.P.S.); +34-881-012-174 (L.A.S.) Received: 28 September 2020; Accepted: 30 September 2020; Published: 1 October 2020 Cross-coupling reactions stand among the most important reactions in chemistry [1,2]. Nowadays, they are a highly valuable synthetic tool used for the preparation of a wide variety of organic compounds, from natural and synthetic bioactive compounds to new organic materials, in all fields of chemistry [3]. Almost 50 years from its discovery, the research in this topic remains active, and important progresses are accomplished every year. For this reason, we believe that a Special Issue on this topic is of general interest for the chemistry community. Advances in cross-coupling reactions have been developed with the aim to expand the synthetic utility of the methodology, through the involvement of new components, reaction conditions, and therefore, novel synthetic applications [4]. Although initially the term “cross-coupling” referred to the reaction of an organometallic reagent with an unsaturated organic halide or pseudohalide under transition metal catalysis, currently the definition is much more general and applies to reactions involving other components, conditions, and more complex synthetic transformations. In addition to the well-known and recognized cross-coupling reactions using organoboron (Suzuki-Miyaura), organotin (Stille), organozinc (Negishi), or organosilicon (Hiyama) nucleophiles, reactions involving other organometallic reagents such as organoindium [5,6], organolithium [7], and Grignard reagents [8] are now useful synthetic alternatives.
    [Show full text]
  • Multimetallic Catalysed Radical Oxidative C(Sp3)–H/C(Sp)–H Cross-Coupling Between Unactivated Alkanes and Terminal Alkynes
    ARTICLE Received 2 Jan 2016 | Accepted 19 Apr 2016 | Published 24 Jun 2016 DOI: 10.1038/ncomms11676 OPEN Multimetallic catalysed radical oxidative C(sp3)–H/C(sp)–H cross-coupling between unactivated alkanes and terminal alkynes Shan Tang1, Pan Wang1, Haoran Li1 & Aiwen Lei1,2 Radical involved transformations are now considered as extremely important processes in modern organic synthetic chemistry. According to the demand by atom-economic and sustainable chemistry, direct C(sp3)–H functionalization through radical oxidative coupling represents an appealing strategy for C–C bond formations. However, the selectivity control of reactive radical intermediates is still a great challenge in these transformations. Here we show a selective radical oxidative C(sp3)–H/C(sp)–H cross-coupling of unactivated alkanes with terminal alkynes by using a combined Cu/Ni/Ag catalytic system. It provides a new way to access substituted alkynes from readily available materials. Preliminary mechanistic studies suggest that this reaction proceeds through a radical process and the C(sp3)–H bond cleavage is the rate-limiting step. This study may have significant implications for controlling selective C–C bond formation of reactive radical intermediates by using multimetallic catalytic systems. 1 College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China. 2 National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China. Correspondence and requests for materials should be addressed to A.L. (email: [email protected]). NATURE COMMUNICATIONS | 7:11676 | DOI: 10.1038/ncomms11676 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11676 ubstituted alkynes are fundamental structural motifs in been developed through normal cross-dehydrogenative numerous natural products, bioactive molecules and coupling33 pathway (Fig.
    [Show full text]
  • Recent Advances in Microwave-Assisted Copper-Catalyzed Cross-Coupling Reactions
    catalysts Review Recent Advances in Microwave-Assisted Copper-Catalyzed Cross-Coupling Reactions Younis Baqi Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman; [email protected]; Tel.: +968-2414-1473 Abstract: Cross-coupling reactions furnishing carbon–carbon (C–C) and carbon–heteroatom (C–X) bond is one of the most challenging tasks in organic syntheses. The early developed reaction protocols by Ullmann, Ullman–Goldberg, Cadiot–Chodkiewicz, Castro–Stephens, and Corey–House, utilizing elemental copper or its salts as catalyst have, for decades, attracted and inspired scientists. However, these reactions were suffering from the range of functional groups tolerated as well as severely restricted by the harsh reaction conditions often required high temperatures (150–200 ◦C) for extended reaction time. Enormous efforts have been paid to develop and achieve more sustainable reaction conditions by applying the microwave irradiation. The use of controlled microwave heating dramatically reduces the time required and therefore resulting in increase in the yield as well as the efficiency of the reaction. This review is mainly focuses on the recent advances and applications of copper catalyzed cross-coupling generation of carbon–carbon and carbon–heteroatom bond under microwave technology. Keywords: cross-coupling reaction; Cu catalyst; microwave irradiation; methodology; synthesis 1. Introduction Carbon–carbon (C–C) and carbon–heteroatom (C–X) bond formations through cross- Citation: Baqi, Y. Recent Advances in coupling reactions represents as one of the most useful strategy in the synthetic organic Microwave-Assisted chemistry, hence many procedures and methodologies have been developed and published Copper-Catalyzed Cross-Coupling in the literature.
    [Show full text]
  • New Trends in C–C Cross-Coupling Reactions: the Use of Unconventional Conditions
    molecules Review New Trends in C–C Cross-Coupling Reactions: The Use of Unconventional Conditions Marta A. Andrade and Luísa M. D. R. S. Martins * Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +35-121-841-9389 Academic Editor: Giuseppe Cirillo Received: 30 October 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The ever-growing interest in the cross-coupling reaction and its applications has increased exponentially in the last decade, owing to its efficiency and effectiveness. Transition metal-mediated cross-couplings reactions, such as Suzuki–Miyaura, Sonogashira, Heck, and others, are powerful tools for carbon–carbon bond formations and have become truly fundamental routes in catalysis, among other fields. Various greener strategies have emerged in recent years, given the widespread popularity of these important reactions. The present review comprises literature from 2015 onward covering the implementation of unconventional methodologies in carbon–carbon (C–C) cross-coupling reactions that embodies a variety of strategies, from the use of alternative energy sources to solvent- free and green media protocols. Keywords: cross-coupling reactions; microwave irradiation; ultrasounds; mechanochemistry; solvent-free; water; ionic liquids; deep eutectic solvents; sustainability 1. Introduction Cross-coupling reactions have attracted and inspired researchers in the academia and industry for decades, given its significance as a synthetic tool in modern organic synthesis. The continuous interest in cross-coupling reactions, with more than 40 years of history, has been mostly driven by its valuable contributions and applications in the medicinal and pharmaceutical industries.
    [Show full text]
  • Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2015 Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica S. Lampkowski College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Lampkowski, Jessica S., "Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids" (2015). Dissertations, Theses, and Masters Projects. Paper 1539626985. https://dx.doi.org/doi:10.21220/s2-r9jh-9635 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Development of a Solid-Supported Glaser-Hay Reaction and Utilization in Conjunction with Unnatural Amino Acids Jessica Susan Lampkowski Ida, Michigan B.S. Chemistry, Siena Heights University, 2013 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Chemistry Department The College of William and Mary May, 2015 COMPLIANCE PAGE Research approved by Institutional Biosafety Committee Protocol number: BC-2012-09-13-8113-dyoung01 Date(s) of approval: This protocol will expire on 2015-11-02 APPROVAL PAGE This
    [Show full text]
  • Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides
    Top Curr Chem (Z) (2016) 374:16 DOI 10.1007/s41061-016-0016-4 REVIEW Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides 1 1 Jan Dommerholt • Floris P. J. T. Rutjes • Floris L. van Delft2 Received: 24 November 2015 / Accepted: 17 February 2016 / Published online: 22 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A nearly forgotten reaction discovered more than 60 years ago—the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole—enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bio- conjugation tool, the usefulness of cyclooctyne–azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide–alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more. In this chapter, a brief historic overview of cycloalkynes is provided first, along with the main synthetic strategies to prepare cycloalkynes and their chemical reactivities. Core aspects of the strain-promoted reaction of cycloalkynes with azides are covered, as well as tools to achieve further reaction acceleration by means of modulation of cycloalkyne structure, nature of azide, and choice of solvent. Keywords Strain-promoted cycloaddition Á Cyclooctyne Á BCN Á DIBAC Á Azide This article is part of the Topical Collection ‘‘Cycloadditions in Bioorthogonal Chemistry’’; edited by Milan Vrabel, Thomas Carell & Floris P.
    [Show full text]
  • Indolizidines and Quinolizidines: Natural Products and Beyond
    Indolizidines and quinolizidines: natural products and beyond Edited by Joseph Philip Michael Generated on 05 October 2021, 08:24 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Indolizidines and quinolizidines: natural products and beyond Joseph P. Michael Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 27. Molecular Sciences Institute, School of Chemistry, University of the doi:10.1186/1860-5397-3-27 Witwatersrand, PO Wits 2050, South Africa Received: 24 September 2007 Email: Accepted: 26 September 2007 Joseph P. Michael - [email protected] Published: 26 September 2007 © 2007 Michael; licensee Beilstein-Institut. License and terms: see end of document. Alkaloids occur in such astonishing profusion in nature that amphibians. [5,6] It is thus hardly surprising that both the struc- one tends to forget that they are assembled from a relatively tural elucidation and the total synthesis of these and related small number of structural motifs. Among the motifs that are alkaloids continue to attract the attention of eminent chemists, most frequently encountered are bicyclic systems containing as borne out by the seemingly inexhaustible flow of publica- bridgehead nitrogen, especially 1-azabicyclo[4.3.0]nonanes and tions in prominent journals.
    [Show full text]
  • Odor and Flavor Responses to Additives in Edible Oils 1
    2988 Reprinted from the JOURNAL OF THE AMERICA.." OIL CHEMISTS' SOCIETY, Vol. 48, No.9, Pages: 495-498 (1971) "Purchased by U.S. Department of Agriculture for Official Use." Odor and Flavor Responses to Additives in Edible Oils 1 C.D. EVANS, HELEN A. MOSER and G.R. LIST, Northern Regional Research LaboratorY,2 Peoria, Illinois 61604 ABSTRACT pounds, including unsaturated esters, ketones, alcohols and The odor threshold was determined for a series of hydrocarbons, arose from hydroperoxide breakdown and unsaturated ketones, secondary alcohols, hydro­ could contribute to an autoxidized flavor. In the past carbons and substituted furans added to bland edible decade both vinyl amyl ketone and vinyl ethyl ketone oil. Odor thresholds were taken as the point where (9-11) and their alcohol counterparts (5,9,12) have been 50% of a 15- to 18-member taste panel could detect isolated from autoxidized fats and shown to contribute an odor difference from the control oil. These undesirable flavor components. additives are oxidative products of fats, but the Although various hydrocarbons have been isolated from concentrations investigated were far below any level autoxidized and irradiated fats, they reportedly have associated with an identifying odor or taste of the generally weak flavors. Forss (3) indicates contamination additive per se. Odor, rather than flavor, was selected with alcohols or mercaptans as the source of hydrocarbon as the starting basis because of greater acuity and ease flavor. Smouse et al. (13) demonstrated that I-decyne was a of handling a large number of samples with less taster major component in the volatile products of slightly fatigue.
    [Show full text]