Global Neoproterozoic Petroleum Systems: the Emerging Potential in North Africa

Total Page:16

File Type:pdf, Size:1020Kb

Global Neoproterozoic Petroleum Systems: the Emerging Potential in North Africa Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Global Neoproterozoic petroleum systems: the emerging potential in North Africa JONATHAN CRAIG1*, JUERGEN THUROW2, BINDRA THUSU2, ANDY WHITHAM3 & YOUSEF ABUTARRUMA4 1Eni Exploration and Production Division, Via Emilia 1, 20097 San Donato Milanese, Milan, Italy 2MPRG (Maghreb Petroleum Research Group), University College London, Gower Street, London WC1E 6BT, UK 3CASP (Cambridge Arctic Shelf Programme), Huntingdon Road, Cambridge CB3 0DH, UK 4Earth Science Society of Libya, Tripoli, Libya *Corresponding author (e-mail: [email protected]) Abstract: The Neoproterozoic Eon is relatively poorly known from a petroleum perspective, despite the existence of producing, proven and potential plays in many parts of the world. In tectonic, climatic and petroleum systems terms, the Neoproterozoic to Early Cambrian period can be divided into three distinct phases: a Tonian to Early Cryogenian phase, prior to about 750 Ma, dominated by the formation, stabilization and initial break-up of the supercontinent of Rodinia; a mid Cryogenian to Early Ediacaran phase (c. 750–600Ma) including the major global-scale ‘Sturtian’ and ‘Marinoan’ glaciations and a mid Ediacaran to Early Cambrian (c. post 600Ma) phase corresponding with the formation and stabilization of the Gondwana Super- continent. There is increasing evidence that deposition of many mid to late Neoproterozoic (to Early Palaeozoic) organic-rich units was triggered by strong post-glacial sea level rise on a global scale, following the ‘Snowball Earth’ type glaciations, coupled with basin development and rifting on a more local scale. Fieldwork in North Africa including the Taoudenni Basin in Mauritania, Algeria and Mali; the Anti-Atlas region of Morocco and the Cyrenaica, Kufra and Murzuk basins in Libya has added to the understanding of reservoir, source and seal relationships and confirmed the widespread presence of Precambrian stromatolitic carbonate units of potential reservoir facies. Current research on the chronostratigraphy, distribution and quality of source rocks, controls on reservoir quality and distribution of seals in the Precambrian–Early Cambrian hydrocarbon plays through- out South America, North Africa, the Middle East and the Indian Subcontinent is documented in this Special Publication. One might, quite reasonably, ask why, when there complexities of the Lower Palaeozoic sequences are already more than enough challenges in explor- in the region and, in particular, to understand the ing for conventional hydrocarbons in the Phanero- Upper Ordovician glacigenic hydrocarbon reser- zoic succession, we should want to turn our voirs and the overlying Lower Silurian hydrocarbon attention to the much more complex and challenging source rock (Sutcliffe et al. 2005; Lu¨ning et al. Precambrian succession. Of course, the reality is 2000a; Le Heron et al. 2004; Le Heron & Craig that, much as exploration has moved progressively 2008; Craig et al. 2008). This work ultimately led into deeper water and more hostile environments to the discovery and successful development of the in recent years, it has also begun to address giant El Feel (‘Elephant’) Field in the Murzuq deeper, older and, in many ways, more difficult Basin in Libya, and now forms the foundation for reservoirs. In short, much of the ‘easy exploration’ the continuing highly successful exploration of around the world has been done and we are gradu- the prolific Late Ordovician–Early Silurian hydro- ally being forced to focus on more difficult explora- carbon plays in North Africa and the Middle East. tion targets that we have ignored in the past because During the course of this work, it became increas- there were easier things to do! ingly apparent that below the Palaeozoic there is a In the specific context of northern Africa, several thick sedimentary succession in many parts of recent publications have described in detail the work North Africa about which we know very little, but undertaken over the past two decades to unravel the which frequently contains tantalizing evidence of From:CRAIG, J., THUROW, J., THUSU, B., WHITHAM,A.&ABUTARRUMA, Y. (eds) Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society, London, Special Publications, 326, 1–25. DOI: 10.1144/SP326.1 0305-8719/09/$15.00 # The Geological Society of London 2009. Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 2 J. CRAIG ET AL. active petroleum systems and which has clear analo- develop. Conversely, in an ideal icehouse world, gies with some major proven and producing pet- the continents are generally grouped at equatorial roleum systems elsewhere in the world. latitudes (and, perhaps, also at the poles). In this The goal of the Global Infracambrian Petroleum configuration, any currents encircling the globe Systems Conference held at the Geological Society tend to be polar rather than equatorial. This limits of London in November 2006, which was the inspi- heat exchange between tropical and polar regions, ration for this publication, was to review current and, so, promotes the formation of polar ice caps knowledge about Neoproterozoic–Early Cambrian (e.g. Fensome & Williams 2001). petroleum systems worldwide and to demonstrate Comparison of the global climate record with the that the Late Precambrian (Neoproterozoic) succes- main periods of global glaciation (Crowell 1999) sion in North Africa is worthy of more attention than and the concentration of carbon dioxide in the we have given it in the past. atmosphere (Royer et al. 2004) during the Phanero- The core subject of this Geological Society zoic (Fig. 1) shows that the Permo-Carboniferous Special Publication – the period of Earth’s history glacial era and the current glacial interval corre- we call the Neoproterozoic Era – began 1000 Ma spond with periods of low carbon dioxide concen- ago, lasted for some 458 Ma and ended at the start tration (low greenhouse gas). Anomalously, the of the Cambrian 542 Ma ago. In many ways the pub- Late Ordovician glaciation occurs in the middle of lication of this volume represents the opening of a a period of apparent greenhouse climate and at a new chapter in petroleum exploration in North time of high CO2 levels, possibly some 14 times Africa and the Middle East. This new chapter is the level of today, although there is a substantial focused on the Neoproterozoic–Early Cambrian degree of uncertainty in this value (+5or sequences underlying the prolific Palaeozoic greater). The graph of atmospheric CO2 concen- petroleum systems that have themselves, in the tration (Fig. 1) has not been extended back to the last two decades, passed from frontier exploration Precambrian because it exhibits large and compara- concepts to one of the main targets of hydrocarbon tively rapid variations in this time period (Hoffman exploration across the region. With time, and with et al. 1998; Halverson et al. 2005). an appropriate level of focus and active research, It is interesting from a petroleum perspective the Neoproterozoic–Early Cambrian successions to consider the relationships between global in North Africa and the Middle East could prove climate, sea level and distribution of source rocks to be a new challenging frontier for hydrocarbon through time. Figure 2 shows the temporal distri- exploration across this vast region. bution of the main effective petroleum source rocks of the world in terms of the percentage of Global climate and petroleum source world hydrocarbon reserves generated from them, rock distribution together with a generalized plot of eustatic sea level. In broad terms, the eustatic sea-level curve A common theme that runs through this Special exhibits the same cyclicity as the global climate Publication is the role of global climate and glacia- record, with periods of high sea level corresponding tion in the occurrence and distribution of petroleum with periods of greenhouse climate (and low ice source rocks in the Neoproterozoic successions. volumes). The deposition of many of the world’s A plot of global climate through time for the last major petroleum source rocks appears intimately billion years and extending some 100 Ma into the linked to periods of marine transgression and at future (Fig. 1) shows that the Earth has experienced least some of these transgressions are, predomi- alternating periods of greenhouse and icehouse nantly, glacially driven. There is a growing body climate (Coppold & Powell 2000). There appears of evidence to suggest that even the smaller and to be cyclicity in this global climate record, with more frequent cyclical, or at least episodic, eustatic the greenhouse periods lasting some 250 Ma and sea-level oscillations throughout geological time the icehouse periods lasting around 100 Ma. These are caused by fluctuations in ice volume (e.g. cycles can themselves be grouped into three Weissert & Erba 2004; Simmons et al. 2007; longer Supercycles of 300–350 Ma each. It is, of Bornemann et al. 2008; Stephenson et al. 2008). course, well recognized that these long-period Interestingly, when the distribution of Effective cycles in global climate are linked to plate tectonic Petroleum Source Rocks of the World shown in processes, and to cycles in the formation and sub- Figure 2 was originally published by Klemme & sequent ‘break-up’ of supercontinents through Ulmishek (1991), they estimated that only 0.2% of time. In an ideal greenhouse world, the continental world hydrocarbon reserves were derived from configuration is such that equatorial currents can Neoproterozoic source rocks. encircle the globe, and there is exchange between An estimation of reserves per source rock for tropical and polar waters. This configuration leads North Africa (updated from Macgregor 1996) to a climate too warm for polar ice caps to shows a Mesozoic–Cenozoic petroleum system, Downloaded from http://sp.lyellcollection.org/ GLOBAL NEOPROTEROZOIC PETROLEUM SYSTEMS byguestonSeptember25,2021 Fig. 1. Global climate, glaciations and atmospheric carbon dioxide levels through time from 1000 Ma to 100 Ma in the future. Carbon dioxide levels are shown as a ratio compared to present-day levels.
Recommended publications
  • Reconciling Proxy Records and Models of Earth's Oxygenation During the Neoproterozoic and Palaeozoic
    This is a repository copy of Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/165529/ Version: Accepted Version Article: Tostevin, R and Mills, BJW orcid.org/0000-0002-9141-0931 (2020) Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10 (4). 20190137. ISSN 2042-8901 https://doi.org/10.1098/rsfs.2019.0137 © 2020 The Author(s). This is an author produced version of an article published in Interface Focus. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Reconciling proxy records and models of E oxygenation during 2 the Neoproterozoic and Palaeozoic 3 Rosalie Tostevin1 and Benjamin J. W. Mills2 4 1Department of Geological Sciences, University of Cape Town, Rondebosch, Cape Town, 5 South Africa.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland
    Sedimentary Geology 294 (2013) 219–232 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Invited review Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland Zheng-Xiang Li a,b,⁎, David A.D. Evans b, Galen P. Halverson c,d a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA c Earth & Planetary Sciences/GEOTOP, McGill University, 3450 University St., Montreal, Quebec H3A0E8, Canada d Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia article info abstract Article history: This review paper presents a set of revised global palaeogeographic maps for the 825–540 Ma interval using Received 6 January 2013 the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. Received in revised form 24 May 2013 These maps form the basis for an examination of the relationships between known glacial deposits, Accepted 28 May 2013 palaeolatitude, positions of continental rifting, relative sea-level changes, and major global tectonic events Available online 5 June 2013 such as supercontinent assembly, breakup and superplume events. This analysis reveals several fundamental ’ Editor: J. Knight palaeogeographic features that will help inform and constrain models for Earth s climatic and geodynamic evolution during the Neoproterozoic. First, glacial deposits at or near sea level appear to extend from high Keywords: latitudes into the deep tropics for all three Neoproterozoic ice ages (Sturtian, Marinoan and Gaskiers), al- Neoproterozoic though the Gaskiers interval remains very poorly constrained in both palaeomagnetic data and global Rodinia lithostratigraphic correlations.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 58, Number 4, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 58, number 4, pp. 605–622 doi:10.1093/icb/icy088 Society for Integrative and Comparative Biology SYMPOSIUM INTRODUCTION The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an “Explosion” Downloaded from https://academic.oup.com/icb/article-abstract/58/4/605/5056706 by Stanford Medical Center user on 15 October 2018 Erik A. Sperling1 and Richard G. Stockey Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA From the symposium “From Small and Squishy to Big and Armored: Genomic, Ecological and Paleontological Insights into the Early Evolution of Animals” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California. 1E-mail: [email protected] Synopsis Animals originated and evolved during a unique time in Earth history—the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies—utilizing a diversity of methodologies—agree that animal multicellularity had arisen by 800 million years ago (Ma) (Tonian period), the bilaterian body plan by 650 Ma (Cryogenian), and divergences between sister phyla occurred 560–540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges.
    [Show full text]
  • Soils in the Geologic Record
    in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction.
    [Show full text]
  • (Silurian) Anoxic Palaeo-Depressions at the Western Margin of the Murzuq Basin (Southwest Libya), Based on Gamma-Ray Spectrometry in Surface Exposures
    GeoArabia, Vol. 11, No. 3, 2006 Gulf PetroLink, Bahrain Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures Nuri Fello, Sebastian Lüning, Petr Štorch and Jonathan Redfern ABSTRACT Following the melting of the Gondwanan icecap and the resulting postglacial sea- level rise, organic-rich shales were deposited in shelfal palaeo-depressions across North Africa and Arabia during the latest Ordovician to earliest Silurian. The unit is absent on palaeohighs that were flooded only later when the anoxic event had already ended. The regional distribution of the Silurian black shale is now well-known for the subsurface of the central parts of the Murzuq Basin, in Libya, where many exploration wells have been drilled and where the shale represents the main hydrocarbon source rock. On well logs, the Silurian black shale is easily recognisable due to increased uranium concentrations and, therefore, elevated gamma-ray values. The uranium in the shales “precipitated” under oxygen- reduced conditions and generally a linear relationship between uranium and organic content is developed. The distribution of the Silurian organic-rich shales in the outcrop belts surrounding the Murzuq Basin has been long unknown because Saharan surface weathering has commonly destroyed the organic matter and black colour of the shales, making it complicated to identify the previously organic-rich unit in the field. In an attempt to distinguish (previously) organic-rich from organically lean shales at outcrop, seven sections that straddle the Ordovician-Silurian boundary were measured by portable gamma-ray spectrometer along the outcrops of the western margin of the Murzuq Basin.
    [Show full text]
  • Precambrian Petroleum Systems
    exploration & production Global Climate, the Dawn of Life and the Earth’s Oldest Petroleum Systems Jonathan Craig Eni Upstream & Technical Services Milan, Italy Societe Geologique de France, Paris www.eni.it Thursday 26th November 2015 Global Climate, Glaciations and Source Rocks in North Africa PRECAMBIAN PETROLEUM SYSTEM PALEOZOIC PETROLEUM SYSTEM MESOZOIC PETROLEUM SYSTEM Gas/Cond . Triassic Oil Illizi/Oued Mya Sirte 60 Ice extent data ? Ahnet/Murzuq Suez Pelagian in part after 0 50 Crowell, 1999 Hassi ‘R Mel 10 40 Total Mesozoic Sirte 20 30 and Tertiary- Hassi (south) Suez sourced reserves = 57 700 Ma 635 Ma Messaoud Lat.) - - Pelagian ° 30 Illizi/Ghadames 20 BBOE Abu Ahnet Total Paleozoic- Gharadiq 40 Illizi BBOE reservesned to sourceage sourced reserves = 50 BBOE 10 C Ord S Dev. Carb P Tr. Jur. Cret. Tert. Ice ExtentIce ( 50 . Total Precambian- sourced reserves = ? 60 Carbo - Source rock data Global climate change based Marinoan Glaciation 665 Glaciation Marinoan Sturtian 7040 Sturtian Glaciation Modified from On geological data as Permo Glaciations Macgregor, 1996 Tertiary Glaciation Gaskiers Event Summarized by Coppold and Powell (2000) exploration & production 2 //Dise/Pedini/Archivio_57/ Mesoproterozoic-Neoproterozoic Timescale and Key Events Ice Extent (°Lat ) 90° 60° 30° 0° 400 443.7 Ma ORDOVICIAN More organicburial Less organicburial 488.3 Ma GONDWANA 500 CAMBRIAN Gondwana Formed 542 Ma 542 Ma Ediacaran Radiation° by 540 - 530 Ma EDIACARAN Gaskiers Event (c. 580 Ma) West Gondwana 600 Acraman impact, assembled by 600 Ma 630 Ma VENDIAN Australia( c. 610 Ma) Marinoan Glaciat ion 665 – 635 Ma SNOWBALL EARTH 700 700 Ma PERIOD St ur t ian Glaciat ion 740 – 700 Ma CRYOGEN IAN 740 Ma740 Ma Break - up of RODINIA 800 (Superplume Event ?) LAT E 830 Ma 850 Ma RIPH EAN 900 900 Ma NEOPROTEROZOIC NEOPROTEROZOICTONIAN TONIAN Formation of 10 5 0 - 5 - 10 RODINIA δ 13 (C % VPDB) 1000 1000 Ma 1000 Ma First multicellular Glaciation organisms EA RLY ( c.
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • 1. TITLE of CONSTITUENT BODY International Commission on Stratigraphy (ICS) 2. OVERALL OBJECTIVES, and FIT WITHIN IUGS SCIENCE P
    1 INTERNATIONAL UNION OF GEOLOGICAL SCIENCES Chair INTERNATIONAL COMMISSION ON STRATIGRAPHY Chair Prof. Stanley FINNEY, Department of Geological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA TEL: 1-562-985-8637 (office); FAX: 1-562-985-8638; E-mail: [email protected] Vice Chair Prof. Shanchi PENG, Nanjing Institute of Geology & Palaeontology, Chinese Academy of Sciences, 39 East Beijing St., Nanjing 210008, China TEL and FAX: 86-25-8328 2135; E-mail: [email protected] Secretary General Dr. Paul R. BOWN, Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK TEL: 44-0-20-7504-2431 office; FAX 44-0-20-7388-7614; E-mail: [email protected] 1. TITLE OF CONSTITUENT BODY International Commission on Stratigraphy (ICS) Summary and compilation of subcommission reports submitted jointly by: Chair: Prof. Stanley C Finney Department of Geological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA Tel: 1-562-985-8637; Fax: 1-562-985-8638; E-mail: [email protected] Secretary General: Dr. Paul R Bown Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK Tel: +44(0)20-7679-2431; E-mail: [email protected] 2. OVERALL OBJECTIVES, AND FIT WITHIN IUGS SCIENCE POLICY Objectives The International Commission on Stratigraphy (ICS) is a body of expert stratigraphers founded for the purpose of promoting and coordinating long-term international cooperation and establishing standards in stratigraphy. Its principal objectives are: (a) Establishment and publication of a standard global stratigraphic time scale and the preparation and publication of global correlation charts, with explanatory notes.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron ISSN 1650-6553 Copyright © Corentin Loron Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Corentin Loron The diversification of unicellular, auto- and heterotrophic protists and the appearance of multicellular microorganisms is recorded in numerous Tonian age successions worldwide, including the Visingsö Group in southern Sweden. The Tonian Period (1000-720 Ma) was a time of changes in the marine environments with increasing oxygenation and a high input of mineral nutrients from the weathering continental margins to shallow shelves, where marine life thrived. This is well documented by the elevated level of biodiversity seen in global microfossil
    [Show full text]