Mikrotöne Small Is Beautiful
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Andrián Pertout
Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure -
Clarinet Quarter-Tone Fingering Chart
Clarinet Quarter-Tone Fingering Chart 1st Edition rev.1 2017 Jason Alder www.jasonalder.com ii Author’s Note This clarinet quarter-tone fingering chart developed as a continuation of my initial work of one for bass clarinet, which grew from my extensive playing of contemporary music and study of South-Indian Karnatic music. My focus had been primarily on bass clarinet, so the development of this chart for soprano clarinet didn’t come to realization until some years later as my own need for it arose, occurring simultaneously with a decision to rework the initial bass clarinet chart into a second edition. The first edition for clarinet therefore follows the same conventions as the second edition bass clarinet fingering chart. This first revision revisits a few quarter-tone fingerings around the “break” after I discovered some better ones to use. Jason Alder London, 2017 iii Guide to the Fingering Chart This fingering chart was made using a Buffet R13 clarinet, and thus the fingerings notated are based on the Boehm system. Because some differences may exist between different manufacturers, it is important to note how this system correlates to your own instrument. In some fingerings I have used the Left Hand Ab//Eb key, which not all instruments have. I’ve included this only when its use is an option, but have omitted the outline when it’s not. Many notes, particularly quarter-tones and altissimo notes, can have different fingerings. I have notated what I found to be best in tune for me, with less regard for ease and fluidity of playing. -
Microtonality As an Expressive Device: an Approach for the Contemporary Saxophonist
Technological University Dublin ARROW@TU Dublin Dissertations Conservatory of Music and Drama 2009 Microtonality as an Expressive Device: an Approach for the Contemporary Saxophonist Seán Mac Erlaine Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/aaconmusdiss Part of the Composition Commons, Musicology Commons, Music Pedagogy Commons, Music Performance Commons, and the Music Theory Commons Recommended Citation Mac Erlaine, S.: Microtonality as an Expressive Device: an Approach for the Contemporary Saxophonist. Masters Dissertation. Technological University Dublin, 2009. This Dissertation is brought to you for free and open access by the Conservatory of Music and Drama at ARROW@TU Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Microtonality as an expressive device: An approach for the contemporary saxophonist September 2009 Seán Mac Erlaine www.sean-og.com Table of Contents Abstract i Introduction ii CHAPTER ONE 1 1.1 Tuning Theory 1 1.1.1 Tuning Discrepancies 1 1.2 Temperament for Keyboard Instruments 2 1.3 Non‐fixed Intonation Instruments 5 1.4 Dominance of Equal Temperament 7 1.5 The Evolution of Equal Temperament: Microtonality 9 CHAPTER TWO 11 2.1 Twentieth Century Tradition of Microtonality 11 2.2 Use of Microtonality -
Standard Music Font Layout
SMuFL Standard Music Font Layout Version 0.5 (2013-07-12) Copyright © 2013 Steinberg Media Technologies GmbH Acknowledgements This document reproduces glyphs from the Bravura font, copyright © Steinberg Media Technologies GmbH. Bravura is released under the SIL Open Font License and can be downloaded from http://www.smufl.org/fonts This document also reproduces glyphs from the Sagittal font, copyright © George Secor and David Keenan. Sagittal is released under the SIL Open Font License and can be downloaded from http://sagittal.org This document also currently reproduces some glyphs from the Unicode 6.2 code chart for the Musical Symbols range (http://www.unicode.org/charts/PDF/U1D100.pdf). These glyphs are the copyright of their respective copyright holders, listed on the Unicode Consortium web site here: http://www.unicode.org/charts/fonts.html 2 Version history Version 0.1 (2013-01-31) § Initial version. Version 0.2 (2013-02-08) § Added Tick barline (U+E036). § Changed names of time signature, tuplet and figured bass digit glyphs to ensure that they are unique. § Add upside-down and reversed G, F and C clefs for canzicrans and inverted canons (U+E074–U+E078). § Added Time signature + (U+E08C) and Time signature fraction slash (U+E08D) glyphs. § Added Black diamond notehead (U+E0BC), White diamond notehead (U+E0BD), Half-filled diamond notehead (U+E0BE), Black circled notehead (U+E0BF), White circled notehead (U+E0C0) glyphs. § Added 256th and 512th note glyphs (U+E110–U+E113). § All symbols shown on combining stems now also exist as separate symbols. § Added reversed sharp, natural, double flat and inverted flat and double flat glyphs (U+E172–U+E176) for canzicrans and inverted canons. -
A Study of Microtones in Pop Music
University of Huddersfield Repository Chadwin, Daniel James Applying microtonality to pop songwriting: A study of microtones in pop music Original Citation Chadwin, Daniel James (2019) Applying microtonality to pop songwriting: A study of microtones in pop music. Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/34977/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Applying microtonality to pop songwriting A study of microtones in pop music Daniel James Chadwin Student number: 1568815 A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Master of Arts University of Huddersfield May 2019 1 Abstract While temperament and expanded tunings have not been widely adopted by pop and rock musicians historically speaking, there has recently been an increased interest in microtones from modern artists and in online discussion. -
Collective Difference: the Pan-American Association of Composers and Pan- American Ideology in Music, 1925-1945 Stephanie N
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 Collective Difference: The Pan-American Association of Composers and Pan- American Ideology in Music, 1925-1945 Stephanie N. Stallings Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF MUSIC COLLECTIVE DIFFERENCE: THE PAN-AMERICAN ASSOCIATION OF COMPOSERS AND PAN-AMERICAN IDEOLOGY IN MUSIC, 1925-1945 By STEPHANIE N. STALLINGS A Dissertation submitted to the College of Music in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2009 Copyright © 2009 Stephanie N. Stallings All Rights Reserved The members of the Committee approve the Dissertation of Stephanie N. Stallings defended on April 20, 2009. ______________________________ Denise Von Glahn Professor Directing Dissertation ______________________________ Evan Jones Outside Committee Member ______________________________ Charles Brewer Committee Member ______________________________ Douglass Seaton Committee Member The Graduate School has verified and approved the above named committee members. ii ACKNOWLEDGMENTS I would like to express my warmest thanks to my dissertation advisor, Denise Von Glahn. Without her excellent guidance, steadfast moral support, thoughtfulness, and creativity, this dissertation never would have come to fruition. I am also grateful to the rest of my dissertation committee, Charles Brewer, Evan Jones, and Douglass Seaton, for their wisdom. Similarly, each member of the Musicology faculty at Florida State University has provided me with a different model for scholarly excellence in “capital M Musicology.” The FSU Society for Musicology has been a wonderful support system throughout my tenure at Florida State. -
Listening to String Sound: a Pedagogical Approach To
LISTENING TO STRING SOUND: A PEDAGOGICAL APPROACH TO EXPLORING THE COMPLEXITIES OF VIOLA TONE PRODUCTION by MARIA KINDT (Under the Direction of Maggie Snyder) ABSTRACT String tone acoustics is a topic that has been largely overlooked in pedagogical settings. This document aims to illuminate the benefits of a general knowledge of practical acoustic science to inform teaching and performance practice. With an emphasis on viola tone production, the document introduces aspects of current physical science and psychoacoustics, combined with established pedagogy to help students and teachers gain a richer and more comprehensive view into aspects of tone production. The document serves as a guide to demonstrate areas where knowledge of the practical science can improve on playing technique and listening skills. The document is divided into three main sections and is framed in a way that is useful for beginning, intermediate, and advanced string students. The first section introduces basic principles of sound, further delving into complex string tone and the mechanism of the violin and viola. The second section focuses on psychoacoustics and how it relates to the interpretation of string sound. The third section covers some of the pedagogical applications of the practical science in performance practice. A sampling of spectral analysis throughout the document demonstrates visually some of the relevant topics. Exercises for informing intonation practices utilizing combination tones are also included. INDEX WORDS: string tone acoustics, psychoacoustics, -
Microtonal Music with ABC (Microabc Tutorial)
Microtonal music with ABC (microabc tutorial) Hudson Lacerda <[email protected]> August 29, 2010 Contents 1 Introduction 3 2 Software requirements 3 3 Understanding the basic concepts 3 3.1 ABC andmicrotones....................................... 4 3.2 Macros and preprocessors . ........... 5 3.3 microabc isageneratorofmacros................................ 6 3.4 microabc asapreprocessor .................................... 7 3.5 MIDI limitations.......................................... 7 4 The steps 8 5 Examples 8 5.1 Quickstart........................................ ...... 8 5.1.1 Bach’schoral .................................. ...... 9 5.1.2 Makechanges,learnmore. ........ 10 5.2 A scale of harmonics – microabc outputmodes......................... 10 5.2.1 The microabc inputfile .................................. 11 5.2.2 The ABC filewithmacros.................................. 11 5.2.3 Microtonal mode ...................................... 12 5.2.4 Chromatic mode, timidity++ and Scala ......................... 13 5.2.5 Diatonic mode........................................ 14 5.2.6 Literal mode......................................... 15 5.3 Anexamplein19-EDO............................... ........ 16 5.3.1 The microabc file...................................... 16 5.3.2 PostScript ......................................... 16 5.3.3 MIDI ............................................. 16 5.3.4 Thecode....................................... 16 5.3.5 Macrodefinitionsfiles . ....... 17 5.3.6 The ABC filewithmacros................................. -
Violin, I the Instrument, Its Technique and Its Repertory in Oxford Music Online
14.3.2011 Violin, §I: The instrument, its techniq… Oxford Music Online Grove Music Online Violin, §I: The instrument, its technique and its repertory article url: http://www.oxfordmusiconline.com:80/subscriber/article/grove/music/41161pg1 Violin, §I: The instrument, its technique and its repertory I. The instrument, its technique and its repertory 1. Introduction. The violin is one of the most perfect instruments acoustically and has extraordinary musical versatility. In beauty and emotional appeal its tone rivals that of its model, the human voice, but at the same time the violin is capable of particular agility and brilliant figuration, making possible in one instrument the expression of moods and effects that may range, depending on the will and skill of the player, from the lyric and tender to the brilliant and dramatic. Its capacity for sustained tone is remarkable, and scarcely another instrument can produce so many nuances of expression and intensity. The violin can play all the chromatic semitones or even microtones over a four-octave range, and, to a limited extent, the playing of chords is within its powers. In short, the violin represents one of the greatest triumphs of instrument making. From its earliest development in Italy the violin was adopted in all kinds of music and by all strata of society, and has since been disseminated to many cultures across the globe (see §II below). Composers, inspired by its potential, have written extensively for it as a solo instrument, accompanied and unaccompanied, and also in connection with the genres of orchestral and chamber music. Possibly no other instrument can boast a larger and musically more distinguished repertory, if one takes into account all forms of solo and ensemble music in which the violin has been assigned a part. -
Intervals Scales Tuning*
7 INTERVALS SCALES AND TUNING* EDWARD M. BURNS Department of Speech and Hearing Sciences University of Washington Seattle, Washington !. INTRODUCTION In the vast majority of musical cultures, collections of discrete pitch relation- shipsmmusical scales--are used as a framework for composition and improvisa- tion. In this chapter, the possible origins and bases of scales are discussed, includ- ing those aspects of scales that may be universal across musical cultures. The perception of the basic unit of melodies and scales, the musical interval, is also addressed. The topic of tuningmthe exact relationships of the frequencies of the tones composing the intervals and/or scales~is inherent in both discussions. In addition, musical interval perception is examined as to its compliance with some general "laws" of perception and in light of its relationship to the second most important aspect of auditory perception, speech perception. !!. WHY ARE SCALES NECESSARY? The two right-most columns of Table I give the frequency ratios, and their val- ues in the logarithmic "cent" metric, for the musical intervals that are contained in the scale that constitutes the standard tonal material on which virtually all Western music is based: the 12-tone chromatic scale of equal temperament. A number of assumptions are inherent in the structure of this scale. The first is that of octave equivalence, or pitch class. The scale is defined only over a region of one octave; tones separated by an octave are assumed to be in some respects musically equiva- lent and are given the same letter notation (Table I, column 3). The second is that pitch is scaled as a logarithmic function of frequency. -
An Application of Calculated Consonance in Computer-Assisted Microtonal Music
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-12-23 An Application of Calculated Consonance in Computer-Assisted Microtonal Music Burleigh, Ian George Burleigh, I. G. (2013). An Application of Calculated Consonance in Computer-Assisted Microtonal Music (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24833 http://hdl.handle.net/11023/1225 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY An Application of Calculated Consonance in Computer-Assisted Microtonal Music by Ian George Burleigh A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE INTERDISCIPLINARY DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF COMPUTER SCIENCE and SCHOOL OF CREATIVE AND PERFORMING ARTS | MUSIC CALGARY, ALBERTA DECEMBER, 2013 © Ian George Burleigh 2013 Abstract Harmony (the audible result of varied combinations of simultaneously sounding tones) ought to, for the most part, sound pleasing to the ear. The result depends, among other factors, on a proper choice of the pitches for the tones that form harmonious chords, and on their correct intonation during musical performance. This thesis proposes a computational method for calculation of relative consonance among groups of tones, and its possible practical applications in machine-assisted arrangement of tones, namely the choice of tone pitches and their microtonal adjustment. -
The Keyboard Expands - Working on the New Quarter-Tone Piano
Elisa Järvi Pianist, Postdoctoral researcher [email protected] DocMus Doctoral School of the Sibelius Academy (The University of the Arts Helsinki) The text has been published in a book ‘MikroTöne: Small is Beautiful’ (Järvi 2019a, 23–30). A corresponding article in the Finnish language has been published in a book entitled ‘The History of Piano Playing in Finland’, edited by the DocMus Doctoral School in Helsinki, Finland (Järvi 2019b, 170–183). The Keyboard Expands - Working on the New Quarter-Tone Piano The new kind of quarter-tone piano was recently developed in Finland, and is an example of an approach to meet specific needs of contemporary music: namely producing quarter-tones on a full- range keyboard. This article presents some historical facts about the quarter-tone piano. Furthermore, the author discusses the ideas behind a new kind of quarter-tone keyboard from a performer’s point of view. The Quarter-Tone Piano is Born The pioneers of the first European quarter-tone piano were Russian-born composer Ivan Wyschnegradsky (1893–1979) and his Czech colleague Alois Hàba (1893–1973). Wyschnegradsky emigrated to France, and there created sketches for a quarter-tone piano keyboard. These sketches are on display in the Wyschnegradsky archives at the Paul Sacher Foundation in Basel, complete with precise dimensions. The quarter-tone keyboard consists of three keyboards: a middle keyboard with ordinary black and white keys, and an upper and a lower keyboard, both red in colour and tuned one quarter-tone higher than the ordinary keyboard (Ex. 1). Wyschnegradsky took his innovation one step further: his sketches reveal designs for keyboards capable of producing even smaller intervals than a quarter tone, and he wrote musicological essays on the subject of “ultrachromaticism”.