COMPUTATIONAL ANALYSIS of QUARTER-TONE COMPOSITIONS by CHARLES IVES and IVAN WYSCHNEGRADSKY a Thesis Submitted to the College Of

Total Page:16

File Type:pdf, Size:1020Kb

COMPUTATIONAL ANALYSIS of QUARTER-TONE COMPOSITIONS by CHARLES IVES and IVAN WYSCHNEGRADSKY a Thesis Submitted to the College Of COMPUTATIONAL ANALYSIS OF QUARTER-TONE COMPOSITIONS BY CHARLES IVES AND IVAN WYSCHNEGRADSKY A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Arts by Andrew M. Blake May 2020 Table of Contents Page List of Figures ................................................................................................................................. v List of Tables ................................................................................................................................. vi CHAPTER I .................................................................................................................................... 1 INTRODUCTION .......................................................................................................................... 1 The Quarter-Tone System ........................................................................................................... 1 Notation and Intervals ............................................................................................................. 2 Ives’ Some Quarter-Tone Impressions ........................................................................................ 4 Wyschnegradsky’s Manual of Quarter-Tone Harmony .......................................................... 6 Approaches to Analysis of Quarter-Tone Music ....................................................................... 10 The Place of Quarter-Tones in the Harmonic Series ................................................................. 11 Pitch-Class Set Theory in 24-EDO ........................................................................................ 14 Computational Analysis ........................................................................................................ 16 Further Review of Related Literature .................................................................................... 17 CHAPTER II ................................................................................................................................. 24 ANALYSES OF SELECTED EXCERPTS.................................................................................. 24 Ives’ Three Quarter-Tone Pieces ............................................................................................... 24 Three Quarter-Tone Pieces - I. Largo .................................................................................... 24 Three Quarter-Tone Pieces: III. Chorale ............................................................................... 30 Wyschnegradsky’s 24 Preludes ................................................................................................ 34 Prelude 1 in C ........................................................................................................................ 38 Prelude 4 in E ¼-sharp .......................................................................................................... 41 CHAPTER III ............................................................................................................................... 45 COMPUTATIONAL TOOLS FOR MICROTONAL ANALYSIS ............................................. 45 The Limitations of the Humdrum Toolkit ................................................................................. 45 Microtonal Hint ......................................................................................................................... 46 Microtonal Set-Theory Tools .................................................................................................... 49 CHAPTER IV ............................................................................................................................... 52 COMPUTATIONAL ANALYSES OF SELECTED EXCERPTS .............................................. 52 Compiling a Small Corpus ........................................................................................................ 52 Analyzing and Interpreting the Output of mhint ....................................................................... 53 Ives’ Three Quarter-Tone Pieces ............................................................................................... 54 Largo ...................................................................................................................................... 55 Chorale................................................................................................................................... 57 Wyschnegradsky’s 24 Preludes: Comparing Preludes I and IV. .............................................. 61 CHAPTER V ................................................................................................................................ 66 CONCLUSION AND FUTURE WORK ..................................................................................... 66 Conclusion ................................................................................................................................. 66 Future Avenues of Research ..................................................................................................... 67 References ..................................................................................................................................... 70 v List of Figures Figure 1. Spectrum of 24-EDO Accidentals. ................................................................................. 2 Figure 2. Ives' Primary, or "Fundamental Major" Chord. .............................................................. 5 Figure 3. Ives' Secondary, or "Fundamental Minor" Chord. ......................................................... 6 Figure 4. Quarter-tone Appoggiaturas (Wyschnegradsky 1932, 12). ............................................. 7 Figure 5. Wyschnegradsky's 13 Quarter-tone Altered Triads (Wyschnegradsky, 1932, 17). ....... 7 Figure 6. Quarter-Tone Modulations (Wyschnegradsky 1932, 20). .............................................. 8 Figure 7. Motivic Repetition in Wyschnegradsky's Prelude No. 1. ............................................. 10 Figure 8. Wyschnegradsky's "Diatonicized-Chromatic" Scale on C. .......................................... 11 Figure 9. Deviation of Interval Approximations in 12-EDO from the Harmonic Series. ........... 12 Figure 10. Deviation of Interval Approximations in 24-EDO from the Harmonic Series. ......... 13 Figure 11. Quarter-Tone Passing Motion and primary theme of Ives Largo (A). ....................... 26 Figure 12. Ives' Primary chord, punctuated by other quartal/quintal sonorities. ......................... 27 Figure 13. Underlying augmented triads in mm. 34-37 of Largo. ............................................... 28 Figure 14. "Tonic Prolongation" in mm. 1-4 of Ives' Chorale. .................................................... 31 Figure 15. Primary and secondary chords in transition section. .................................................. 32 Figure 16. "Parallel diatonic thirds" within an altered G Major scale. ........................................ 33 Figure 17. Triadic structures and a return to Ives' primary and secondary chords. ..................... 34 Figure 18. 3-step cycles in the C-DC scale. ................................................................................. 35 Figure 19. 3-step cycle "tonic tetrachord" of Wyschnegradsky's C-DC scale. ............................. 36 Figure 20. "Composing out" the tonic tetrachord in Prelude 1. ................................................... 40 Figure 21. The E 1/4-sharp DC scale on which Prelude 4 is based. ............................................ 41 Figure 22. Prelude 4, mm. 1-6 with E 1/4-sharp ostinato present. .............................................. 41 Figure 23. Prelude 4, mm. 1-6 with ostinato omitted. ................................................................. 42 Figure 24. Polyrhythm and syncopation in Prelude 4. ................................................................. 43 Figure 25. Imitation emphasizing thirds of various sizes in Prelude 4. ....................................... 44 Figure 26. Imitation in the coda of Prelude 4. ............................................................................. 44 Figure 27. Calculating a specific interval from generic interval and size in cents. ..................... 47 Figure 28. Wyschnegradsky's Prelude No. 4 (two piano score). ................................................. 48 Figure 29. Wyschnegradsky's Prelude No. 4 (condensed study score). ...................................... 48 Figure 30. Exponential growth in the number of hexachords in N-EDO systems (6-36). .......... 50 Figure 31. Exponential growth in the number of N/2-chords in N-EDO (6-36). ........................ 50 Figure 32. Frequencies of intervals in Ives' Largo. ...................................................................... 55 Figure 33. Differences in Interval Class content in sections of Largo. ........................................ 57 Figure 34. Intervallic content of Ives' Chorale. ........................................................................... 58 Figure 35. Frequencies of ICs 2.5, 3.5, and 5 in sections of Ives' Chorale. ................................. 60 Figure 36. Primary and secondary chords in the coda of Ives' Chorale. ...................................... 61 Figure 37. Intervallic content of Prelude 1. ................................................................................. 62 Figure 38. Pentachord
Recommended publications
  • Naming a Chord Once You Know the Common Names of the Intervals, the Naming of Chords Is a Little Less Daunting
    Naming a Chord Once you know the common names of the intervals, the naming of chords is a little less daunting. Still, there are a few conventions and short-hand terms that many musicians use, that may be confusing at times. A few terms are used throughout the maze of chord names, and it is good to know what they refer to: Major / Minor – a “minor” note is one half step below the “major.” When naming intervals, all but the “perfect” intervals (1,4, 5, 8) are either major or minor. Generally if neither word is used, major is assumed, unless the situation is obvious. However, when used in naming extended chords, the word “minor” usually is reserved to indicate that the third of the triad is flatted. The word “major” is reserved to designate the major seventh interval as opposed to the minor or dominant seventh. It is assumed that the third is major, unless the word “minor” is said, right after the letter name of the chord. Similarly, in a seventh chord, the seventh interval is assumed to be a minor seventh (aka “dominant seventh), unless the word “major” comes right before the word “seventh.” Thus a common “C7” would mean a C major triad with a dominant seventh (CEGBb) While a “Cmaj7” (or CM7) would mean a C major triad with the major seventh interval added (CEGB), And a “Cmin7” (or Cm7) would mean a C minor triad with a dominant seventh interval added (CEbGBb) The dissonant “Cm(M7)” – “C minor major seventh” is fairly uncommon outside of modern jazz: it would mean a C minor triad with the major seventh interval added (CEbGB) Suspended – To suspend a note would mean to raise it up a half step.
    [Show full text]
  • MUSIC THEORY UNIT 5: TRIADS Intervallic Structure of Triads
    MUSIC THEORY UNIT 5: TRIADS Intervallic structure of Triads Another name of an interval is a “dyad” (two pitches). If two successive intervals (3 notes) happen simultaneously, we now have what is referred to as a chord or a “triad” (three pitches) Major and Minor Triads A Major triad consists of a M3 and a P5 interval from the root. A minor triad consists of a m3 and a P5 interval from the root. Diminished and Augmented Triads A diminished triad consists of a m3 and a dim 5th interval from the root. An augmented triad consists of a M3 and an Aug 5th interval from the root. The augmented triad has a major third interval and an augmented fifth interval from the root. An augmented triad differs from a major triad because the “5th” interval is a half-step higher than it is in the major triad. The diminished triad differs from minor triad because the “5th” interval is a half-step lower than it is in the minor triad. Recommended process: 1. Memorize your Perfect 5th intervals from most root pitches (ex. A-E, B-F#, C-G, D-A, etc…) 2. Know that a Major 3rd interval is two whole steps from a root pitch If you can identify a M3 and P5 from a root, you will be able to correctly spell your Major Triads. 3. If you need to know a minor triad, adjust the 3rd of the major triad down a half step to make it minor. 4. If you need to know an Augmented triad, adjust the 5th of the chord up a half step from the MAJOR triad.
    [Show full text]
  • Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings
    Fakult¨at fur¨ Elektrotechnik und Informationstechnik Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings Christof Weiß geboren am 16.07.1986 in Regensburg Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) Angefertigt im: Fachgebiet Elektronische Medientechnik Institut fur¨ Medientechnik Fakult¨at fur¨ Elektrotechnik und Informationstechnik Gutachter: Prof. Dr.-Ing. Dr. rer. nat. h. c. mult. Karlheinz Brandenburg Prof. Dr. rer. nat. Meinard Muller¨ Prof. Dr. phil. Wolfgang Auhagen Tag der Einreichung: 25.11.2016 Tag der wissenschaftlichen Aussprache: 03.04.2017 urn:nbn:de:gbv:ilm1-2017000293 iii Acknowledgements This thesis could not exist without the help of many people. I am very grateful to everybody who supported me during the work on my PhD. First of all, I want to thank Prof. Karlheinz Brandenburg for supervising my thesis but also, for the opportunity to work within a great team and a nice working enviroment at Fraunhofer IDMT in Ilmenau. I also want to mention my colleagues of the Metadata department for having such a friendly atmosphere including motivating scientific discussions, musical activity, and more. In particular, I want to thank all members of the Semantic Music Technologies group for the nice group climate and for helping with many things in research and beyond. Especially|thank you Alex, Ronny, Christian, Uwe, Estefan´ıa, Patrick, Daniel, Ania, Christian, Anna, Sascha, and Jakob for not only having a prolific working time in Ilmenau but also making friends there. Furthermore, I want to thank several students at TU Ilmenau who worked with me on my topic. Special thanks go to Prof.
    [Show full text]
  • Out of Death and Despair: Elements of Chromaticism in the Songs of Edvard Grieg
    Ryan Weber: Out of Death and Despair: Elements of Chromaticism in the Songs of Edvard Grieg Grieg‘s intriguing statement, ―the realm of harmonies has always been my dream world,‖1 suggests the rather imaginative disposition that he held toward the roles of harmonic function within a diatonic pitch space. A great degree of his chromatic language is manifested in subtle interactions between different pitch spaces along the dualistic lines to which he referred in his personal commentary. Indeed, Grieg‘s distinctive style reaches beyond common-practice tonality in ways other than modality. Although his music uses a variety of common nineteenth- century harmonic devices, his synthesis of modal elements within a diatonic or chromatic framework often leans toward an aesthetic of Impressionism. This multifarious language is most clearly evident in the composer‘s abundant songs that span his entire career. Setting texts by a host of different poets, Grieg develops an approach to chromaticism that reflects the Romantic themes of death and despair. There are two techniques that serve to characterize aspects of his multi-faceted harmonic language. The first, what I designate ―chromatic juxtapositioning,‖ entails the insertion of highly chromatic material within ^ a principally diatonic passage. The second technique involves the use of b7 (bVII) as a particular type of harmonic juxtapositioning, for the flatted-seventh scale-degree serves as a congruent agent among the realms of diatonicism, chromaticism, and modality while also serving as a marker of death and despair. Through these techniques, Grieg creates a style that elevates the works of geographically linked poets by capitalizing on the Romantic/nationalistic themes.
    [Show full text]
  • Baker Eastman School of Music [email protected] I
    A Cyclic Approach to Harmony in Robert Glasper’s Music Society for Music Theory Columbus, OH November 7, 2019 Ben Baker Eastman School of Music [email protected] I. Introduction Robert Glasper hip-hop R&B jazz neo-soul gospel I. Introduction Robert Glasper Blue Note releases: Canvas (2005) piano trio In My Element (2007) piano trio + R.G. Experiment Double-Booked (2009) Black Radio (2012) R.G. Experiment Black Radio 2 (2013) piano trio Covered (2015) R.G. Experiment ArtScience (2016) I. Introduction Robert Glasper “…probably the most prominent jazz musician of his generation. He’s gotten there by playing within and without jazz, and pushing the music to reconsider its boundaries.” -Russonello (NYT, 2018) I. Introduction Glasper’s Harmonic Language diatonic collections clear tonal centers tertian harmonies root motion by: 3rd (ex. Imaj7 - vi7 - IVmaj7 - ii7) descending 5th (ii7 - V7 - Imaj7) two primary chord qualities: major 7th chords + upper extensions minor 7th chords I. Introduction “Rise and Shine” (Canvas, 2005) Fmaj9 Dbmaj9 Bbm9 Gm11 ™ ™ C œ œ œ bœ œ œ œ j œ œ &b œ J bœ œ œ ˙ ˙ œ Dmaj9 Gm11 D/F# Fmaj9 ™ ™ b œ œ œ j Œ & ˙ J œ œ œ œw ˙ œ œ Dbmaj9 C7 F Bbm11 Gm11 ™ ™ b œ œ œ œ œ œ œ b˙ œw w & bœ œ œ œ œ œ œ J œ 1. Gm11 Dm11 ™ j ™ &b w œ œ œ œw w w 2. Gbmaj9 C7alt F7sus4 ™ b˙ bwœ w ˙ &b ˙ œ œ œ œ œ œ &b∑ ∑ ∑ ∑ ∑ ∑ ∑ I. Introduction “Rise and Shine” (Canvas, 2005) Fmaj9 Dbmaj9 Bbm9 Gm11 ™ ™ C œ œ œ bœ œ œ œ j œ œ &b œ J bœ œ œ ˙ ˙ œ Dmaj9 Gm11 D/F# Fmaj9 ™ ™ b œ œ œ j Œ & ˙ J œ œ œ œw ˙ œ œ Dbmaj9 C7 F Bbm11 Gm11 ™ ™ b œ œ œ œ œ œ œ b˙ œw w & bœ œ œ œ œ œ œ J œ 1.
    [Show full text]
  • 3 Manual Microtonal Organ Ruben Sverre Gjertsen 2013
    3 Manual Microtonal Organ http://www.bek.no/~ruben/Research/Downloads/software.html Ruben Sverre Gjertsen 2013 An interface to existing software A motivation for creating this instrument has been an interest for gaining experience with a large range of intonation systems. This software instrument is built with Max 61, as an interface to the Fluidsynth object2. Fluidsynth offers possibilities for retuning soundfont banks (Sf2 format) to 12-tone or full-register tunings. Max 6 introduced the dictionary format, which has been useful for creating a tuning database in text format, as well as storing presets. This tuning database can naturally be expanded by users, if tunings are written in the syntax read by this instrument. The freely available Jeux organ soundfont3 has been used as a default soundfont, while any instrument in the sf2 format can be loaded. The organ interface The organ window 3 MIDI Keyboards This instrument contains 3 separate fluidsynth modules, named Manual 1-3. 3 keysliders can be played staccato by the mouse for testing, while the most musically sufficient option is performing from connected MIDI keyboards. Available inputs will be automatically recognized and can be selected from the menus. To keep some of the manuals silent, select the bottom alternative "to 2ManualMicroORGANircamSpat 1", which will not receive MIDI signal, unless another program (for instance Sibelius) is sending them. A separate menu can be used to select a foot trigger. The red toggle must be pressed for this to be active. This has been tested with Behringer FCB1010 triggers. Other devices could possibly require adjustments to the patch.
    [Show full text]
  • Unified Music Theories for General Equal-Temperament Systems
    Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories.
    [Show full text]
  • Download the Just Intonation Primer
    THE JUST INTONATION PPRIRIMMEERR An introduction to the theory and practice of Just Intonation by David B. Doty Uncommon Practice — a CD of original music in Just Intonation by David B. Doty This CD contains seven compositions in Just Intonation in diverse styles — ranging from short “fractured pop tunes” to extended orchestral movements — realized by means of MIDI technology. My principal objectives in creating this music were twofold: to explore some of the novel possibilities offered by Just Intonation and to make emotionally and intellectually satisfying music. I believe I have achieved both of these goals to a significant degree. ——David B. Doty The selections on this CD pro­­cess—about synthesis, decisions. This is definitely detected in certain struc- were composed between sampling, and MIDI, about not experimental music, in tures and styles of elabora- approximately 1984 and Just Intonation, and about the Cageian sense—I am tion. More prominent are 1995 and recorded in 1998. what compositional styles more interested in result styles of polyphony from the All of them use some form and techniques are suited (aesthetic response) than Western European Middle of Just Intonation. This to various just tunings. process. Ages and Renaissance, method of tuning is com- Taken collectively, there It is tonal music (with a garage rock from the 1960s, mendable for its inherent is no conventional name lowercase t), music in which Balkan instrumental dance beauty, its variety, and its for the music that resulted hierarchic relations of tones music, the ancient Japanese long history (it is as old from this process, other are important and in which court music gagaku, Greek as civilization).
    [Show full text]
  • MTO 20.2: Wild, Vicentino's 31-Tone Compositional Theory
    Volume 20, Number 2, June 2014 Copyright © 2014 Society for Music Theory Genus, Species and Mode in Vicentino’s 31-tone Compositional Theory Jonathan Wild NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.2/mto.14.20.2.wild.php KEYWORDS: Vicentino, enharmonicism, chromaticism, sixteenth century, tuning, genus, species, mode ABSTRACT: This article explores the pitch structures developed by Nicola Vicentino in his 1555 treatise L’Antica musica ridotta alla moderna prattica . I examine the rationale for his background gamut of 31 pitch classes, and document the relationships among his accounts of the genera, species, and modes, and between his and earlier accounts. Specially recorded and retuned audio examples illustrate some of the surviving enharmonic and chromatic musical passages. Received February 2014 Table of Contents Introduction [1] Tuning [4] The Archicembalo [8] Genus [10] Enharmonic division of the whole tone [13] Species [15] Mode [28] Composing in the genera [32] Conclusion [35] Introduction [1] In his treatise of 1555, L’Antica musica ridotta alla moderna prattica (henceforth L’Antica musica ), the theorist and composer Nicola Vicentino describes a tuning system comprising thirty-one tones to the octave, and presents several excerpts from compositions intended to be sung in that tuning. (1) The rich compositional theory he develops in the treatise, in concert with the few surviving musical passages, offers a tantalizing glimpse of an alternative pathway for musical development, one whose radically augmented pitch materials make possible a vast range of novel melodic gestures and harmonic successions.
    [Show full text]
  • Surviving Set Theory: a Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory
    Surviving Set Theory: A Pedagogical Game and Cooperative Learning Approach to Undergraduate Post-Tonal Music Theory DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela N. Ripley, M.M. Graduate Program in Music The Ohio State University 2015 Dissertation Committee: David Clampitt, Advisor Anna Gawboy Johanna Devaney Copyright by Angela N. Ripley 2015 Abstract Undergraduate music students often experience a high learning curve when they first encounter pitch-class set theory, an analytical system very different from those they have studied previously. Students sometimes find the abstractions of integer notation and the mathematical orientation of set theory foreign or even frightening (Kleppinger 2010), and the dissonance of the atonal repertoire studied often engenders their resistance (Root 2010). Pedagogical games can help mitigate student resistance and trepidation. Table games like Bingo (Gillespie 2000) and Poker (Gingerich 1991) have been adapted to suit college-level classes in music theory. Familiar television shows provide another source of pedagogical games; for example, Berry (2008; 2015) adapts the show Survivor to frame a unit on theory fundamentals. However, none of these pedagogical games engage pitch- class set theory during a multi-week unit of study. In my dissertation, I adapt the show Survivor to frame a four-week unit on pitch- class set theory (introducing topics ranging from pitch-class sets to twelve-tone rows) during a sophomore-level theory course. As on the show, students of different achievement levels work together in small groups, or “tribes,” to complete worksheets called “challenges”; however, in an important modification to the structure of the show, no students are voted out of their tribes.
    [Show full text]
  • Andrián Pertout
    Andrián Pertout Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition Volume 1 Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Produced on acid-free paper Faculty of Music The University of Melbourne March, 2007 Abstract Three Microtonal Compositions: The Utilization of Tuning Systems in Modern Composition encompasses the work undertaken by Lou Harrison (widely regarded as one of America’s most influential and original composers) with regards to just intonation, and tuning and scale systems from around the globe – also taking into account the influential work of Alain Daniélou (Introduction to the Study of Musical Scales), Harry Partch (Genesis of a Music), and Ben Johnston (Scalar Order as a Compositional Resource). The essence of the project being to reveal the compositional applications of a selection of Persian, Indonesian, and Japanese musical scales utilized in three very distinct systems: theory versus performance practice and the ‘Scale of Fifths’, or cyclic division of the octave; the equally-tempered division of the octave; and the ‘Scale of Proportions’, or harmonic division of the octave championed by Harrison, among others – outlining their theoretical and aesthetic rationale, as well as their historical foundations. The project begins with the creation of three new microtonal works tailored to address some of the compositional issues of each system, and ending with an articulated exposition; obtained via the investigation of written sources, disclosure
    [Show full text]
  • Microtonality As an Expressive Device: an Approach for the Contemporary Saxophonist
    Technological University Dublin ARROW@TU Dublin Dissertations Conservatory of Music and Drama 2009 Microtonality as an Expressive Device: an Approach for the Contemporary Saxophonist Seán Mac Erlaine Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/aaconmusdiss Part of the Composition Commons, Musicology Commons, Music Pedagogy Commons, Music Performance Commons, and the Music Theory Commons Recommended Citation Mac Erlaine, S.: Microtonality as an Expressive Device: an Approach for the Contemporary Saxophonist. Masters Dissertation. Technological University Dublin, 2009. This Dissertation is brought to you for free and open access by the Conservatory of Music and Drama at ARROW@TU Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Microtonality as an expressive device: An approach for the contemporary saxophonist September 2009 Seán Mac Erlaine www.sean-og.com Table of Contents Abstract i Introduction ii CHAPTER ONE 1 1.1 Tuning Theory 1 1.1.1 Tuning Discrepancies 1 1.2 Temperament for Keyboard Instruments 2 1.3 Non‐fixed Intonation Instruments 5 1.4 Dominance of Equal Temperament 7 1.5 The Evolution of Equal Temperament: Microtonality 9 CHAPTER TWO 11 2.1 Twentieth Century Tradition of Microtonality 11 2.2 Use of Microtonality
    [Show full text]