<<

Journal of Vertebrate Paleontology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20

Description of a new of (Anura: ) from Versalles Cave, São Paulo, Brazil

Lucas A. Barcelos , Diego Almeida-Silva , Charles M. D. Santos & Vanessa K. Verdade

To cite this article: Lucas A. Barcelos , Diego Almeida-Silva , Charles M. D. Santos & Vanessa K. Verdade (2020): Description of a new species of fossil Ceratophrys (Anura: Ceratophryidae) from Versalles Cave, São Paulo, Brazil, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1811293 To link to this article: https://doi.org/10.1080/02724634.2020.1811293

View supplementary material

Published online: 07 Oct 2020.

Submit your article to this journal

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1811293 (12 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1811293

ARTICLE

DESCRIPTION OF A NEW SPECIES OF FOSSIL CERATOPHRYS (ANURA: CERATOPHRYIDAE) FROM VERSALLES CAVE, SÃO PAULO, BRAZIL

LUCAS A. BARCELOS, *,1,2 DIEGOALMEIDA-SILVA, 1 CHARLES M. D. SANTOS, 1 and VANESSA K. VERDADE 1 1Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001–Bangú (09210-580), Santo André, São Paulo, Brazil; 2Laboratório de Paleontologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900–Vila Monte Alegre (14040-901), Ribeirão Preto, São Paulo, Brazil, [email protected]

ABSTRACT—We describe a new fossil species of Ceratophrys from cave sediments in Brazil tentatively assessed as late Pleistocene–early in age. The specimen consists of a nearly complete skull that is missing only the right premaxilla and the right columella. A detailed description and comparative analysis, which considers both living and fossil species, supports the conclusion that the specimen represents a previously unknown, extinct species of Ceratophrys. Poorly represented and assessed characters, paleodistribution of Ceratophryidae, and the taxonomic rectification of the Ceratophrys fossil specimens described by Günther (1859) are also discussed.

http://zoobank.org/urn:lsid:zoobank.org:pub:17DCC830-93AB-4FB6-9377-0467E8F3BDF9

SUPPLEMENTAL DATA—Supplemental materials are available for this article for free at www.tandfonline.com/UJVP

Citation for this article: Barcelos, L. A., D. Almeida-Silva C. M. D. Santos, and V. K. Verdade. 2020. Description of a new species of fossil Ceratophrys (Anura: Ceratophryidae) from Versalles Cave, São Paulo, Brazil. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2020.1811293.

INTRODUCTION (Lynch, 1982; Perí, 1994; Wild, 1997b), larval phenotypic charac- ters (Wild, 1997b), immunological data (Maxson and Ruibal, Anurans of the Neotropical clade Ceratophryidae are character- 1988), and molecular markers (Faivovich et al., 2014). Yet, most ized by having a robust, medium-sized to large body (snout–vent of these works consider only living species, and the relationships length [SVL]: 40–50 mm) (Fabrezi, 2006; Evans et al., 2008), of some extant species remain unstable. short limbs, broad skull, mandibular adductor muscles inserting pricei, ampinga (both from the in a broad coronoid process of angulosplenial, disproportionately upper ), and Wawelia gerholdi (lower Miocene) were large jaws in relation to SVL, and non-pedicellated and fang-like previously considered the oldest ceratophryids, but the phyloge- teeth in the maxilla and the premaxilla (Fabrezi, 2006). The skel- netic hypothesis proposing it was heavily scrutinized (e.g., eton is hyperossified (Wild, 1997a), possibly resulting from pera- Agnolin, 2012; Faivovich et al., 2014;Nicolietal.,2016). The holo- morphic heterochrony (Reilly et al., 1997; Fabrezi, 2006). types of these taxa were reassessed and their skeletal anatomy Ceratophryidae is a well-supported clade recovered in most reinterpreted (Nicoli et al., 2016; Báez and Gómez, 2018). A late recent phylogenetic analyses (e.g., Frost et al., 2006; Pyron and Miocene origin of Ceratophryidae was proposed to the exclusion Wiens, 2011; Faivovich et al., 2014; Jetz and Pyron, 2018;Sabbag of Be. ampinga, Ba. pricei,andW. gerholdi (Feng et al., 2017; et al., 2018;Streicheretal.,2018). Living species of Ceratophryidae Hutter et al., 2017). The phylogeny of Báez and Gómez (2018), (sensu Favovich et al., 2014; Frost, 2019) are placed in three genera: which included , recovered none of these taxa within Cerato- Ceratophrys (8 spp.), (1 sp.), and phryidae, in congruence with a younger origin of Ceratophryidae. (3 spp.). Ceratophrys is the most speciose of these and contains Under this hypothesis, the oldest, currently accepted species of two species groups: the C. aurita group, including C. aurita, Ceratophryidae is Ceratophrys sp. MD-CH-06-165 from the C. cranwelli, C. joazeirensis,andC. ornata;andtheC. cornuta Arroyo Chasicó Formation, , , group, including C. calcarata, C. cornuta, C. stolzmanni,and which dates back to the late Miocene (Nicoli et al., 2017). C. testudo (Lynch, 1982; Faivovich et al., 2014). Ceratophryids are relatively common in the anuran fossil record, The species in the C. aurita group occur in the Caatinga, Atlantic compared with other Neotropical clades. There are five recognized Forest, and Pampas biomes, in northeastern, eastern, and southern extinct species (C. prisca species inquirenda Ameghino, 1899, , respectively (Faivovich et al., 2014). The species C. ensenadensis Rusconi, 1932, C. ameghinorum Fernicola, 2001, in the C. cornuta group occur in the Amazon rainforest in north- C. rusconii Agnolin, 2005,andLepidobatrachus australis Nicoli, west South America (Faivovich et al., 2014). The species in 2015) and many specimens are identified only to (see Lepidobatrachus and Chacophrys occur in the Chaco, in southwes- Günther, 1859; Vergnaud-Grazzini, 1968; Marshall and Patterson, tern South America (Faivovich, 1994; Faivovich et al., 2014). 1981;Perí,1993; Rinderknecht, 1998;Fernicola,2001; Pardiñas, The and the systematics of Ceratophryidae were 2001; Mercadal de Barrio and Barrio, 2002; Stoessel et al., 2008; addressed by different authors based on adult osteology Turazzini, 2015; Nicoli, 2014, 2016, 2017; Nicoli et al., 2017; Table 1). Although the aforementioned phylogenies included fossils, none of them had a broad scope of ceratophryid fossil *Corresponding author. species. The differentiation between crown and stem groups of

Published online 07 Oct 2020 Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-2)

TABLE 1. Fossil specimens of Ceratophryidae. Abbreviations: BA, Buenos Aires; MH, Monte Hermoso; US, unnumbered specimen.

Geographical N Collection ID Taxonomy Provenance Age References 1 MMH 84.1.15 Ceratophrys Farola de MH, BA, Pliocene Fernicola, 2001 ameghinorum Argentina 2 MMP 664.S Ceratophrys Barranca de los , Pliocene Fernicola, 2001 ameghinorum BA, Argentina 3 MMP 892.M Ceratophrys MH, BA, Argentina late Miocene– Fernicola, 2001 ameghinorum early Pliocene 4 MMP 664.M Ceratophrys Playa de Los Lobos, Pliocene Fernicola, 2001 ameghinorum Chapadmalal, Argentina 5 MMP 1063.M Ceratophrys Playa de Los Lobos, Pliocene Fernicola, 2001 ameghinorum Chapadmalal, Argentina 6 MLP 88.VII.20.1/2 Ceratophrys Miramar, Barranca Pliocene Fernicola, 2001 ameghinorum Parodi, BA, Argentina 7 MACN 19731 Ceratophrys Farola MH, BA, Pliocene Fernicola, 2001 ameghinorum Argentina 8 MACN 14317-9 Ceratophrys MH, BA, Argentina late Miocene– Rovereto, 1914; Fernicola, ameghinorum early Pliocene 2001

9 MACN 14323-6 Ceratophrys MH, BA, Argentina late Miocene– Rovereto, 1914; Fernicola, ameghinorum early Pliocene 2001 10 NHMUK 18895/6 Ceratophrys aurita Lagoa Santa, Minas Pleistocene Günther, 1859; this paper Gerais, Brazil 11 ZUFABC 038 Ceratophrys aurita Versalles cave, São late Pleistocene– Barcelos and Verdade, 2019 Paulo, Brazil early Holocene 12 PVL 699 (FHC 480), PVL 767 (FHC 481), 1 Ceratophrys Olivos, BA, Argentina Pleistocene Rusconi, 1932 US in FHC (lost) and 1 US in MLP (lost) ensenadensis 13 US (MNHN) Ceratophrys ornata Chuquisaca, Bolivia Pleistocene Vergnaud-Grazzini, 1968 14 MMH 85.3.8 Ceratophrys ornata MH, BA, Argentina Holocene Pardiñas, 2001 15 MMH 85.2.11 Ceratophrys ornata Farola de MH, BA, Holocene Fernicola, 2001; Pardiñas, Argentina 2001 16 MMH 88.2.5 Ceratophrys ornata MH, BA, Argentina Holocene Pardiñas, 2001 17 MMH 90.2.1 Ceratophrys ornata MH, BA, Argentina Holocene Pardiñas, 2001 18 MLP 86.VIII.1.4 Ceratophrys ornata G. Chávez, Los Tres late Pleistocene– Perí, 1993 Reyes, Argentina early Holocene 19 MMP 692-S Ceratophrys ornata Chapadmalal, BA, Pliocene Reig, 1958 Argentina 20 MMP 4846 Ceratophrys ornata Daireaux District, BA, late Pleistocene Perez-Ben et al., 2019 Argentina 21 US (lost) Ceratophrys prisca MH, BA, Argentina Miocene Ameghino, 1899 22 MACN 19744 Ceratophrys Mar Chiquita, Playa Pleistocene Agnolin, 2005 rusconii Dorada, BA, Argentina 23 ZUFABC037 Ceratophrys sagani Versalles cave, São late Pleistocene– Barcelos et al., 2018 Paulo, Brazil early Holocene 24 MLP 86.VIII.1.5/6 Ceratophrys sp. G. Chávez Laguna Los late Pleistocene– Perí, 1993 Tres Reyes, early Holocene Argentina 25 PVSJ 284 Ceratophrys sp. Ullum Valley, San late Miocene Contreras and Acosta, 1998; Juan, Argentina Nicoli, 2016 26 FCS.SA1.M3.590.1 FCS.SA1.M3.590.2 Ceratophrys sp. San Antonio (Río late Holocene Stoessel et al., 2008 FCS.SA1.S1.486.1 FCS.SA1. S1.506.1 Colorado), BA, FCS.SA1.S1.525.1 FCS.SA1.S1.534.1 Argentina 27 MLP 52.IX.27.11 Ceratophrys sp. Miramar, Mar del Sur, late Holocene Frenguelli, 1921; Fernicola, BA, Argentina 2001; Mercadal de Barrio and Barrio, 2002 28 MD-CH-06-165 Ceratophrys sp. Arroyo Chasicó, BA, late Miocene Urrutia and Rosset, 2006; Argentina Nicoli et al., 2017 29 MLP 86.III.25.150/1 Ceratophrys sp. Olavarría, Arroyo Holocene Mercadal de Barrio and Tapalqué, Barrio, 2002 Argentina 30 MLP 96.V.18.12 Ceratophrys sp. Gral. La Madrid, Holocene Mercadal de Barrio and Fortín , Barrio, 2002 Argentina 31 MLP 88.V.20.1 Ceratophrys sp. Gral. Pueyrredón, Mar Pleistocene Mercadal de Barrio and del Plata, Argentina Barrio, 2002 32 MACN 18074 Ceratophrys sp. Chapadmalal, BA, Pliocene Mercadal de Barrio and Argentina Barrio, 2002 33 MACN 17585 Ceratophrys sp. Arroyo Lobería, BA, Pliocene Mercadal de Barrio and Argentina Barrio, 2002

(Continued) Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-3)

TABLE 1. Continued.

Geographical N Collection ID Taxonomy Provenance Age References 34 MACN 17936 Ceratophrys sp. Pta. Lobería, BA, Pliocene Mercadal de Barrio and Argentina Barrio, 2002 35 MLP 34.V.10.8 Ceratophrys sp. Punta Varohué, BA, Pliocene Mercadal de Barrio and Argentina Barrio, 2002 36 MLP 94.II.1.171 Ceratophrys sp. Quequén Salado, BA, Pliocene Mercadal de Barrio and Argentina Barrio, 2002 37 MLP 48.XII.16.195 Ceratophrys sp. MH, BA, Argentina late Miocene– Fernicola, 2001; Mercadal de early Pliocene Barrio and Barrio, 2002 38 MACN 14322 Ceratophrys sp. MH, BA, Argentina late Miocene– Fernicola, 2001 early Pliocene 39 MLP 136 Ceratophrys sp. MH, BA, Argentina late Miocene– Fernicola, 2001 early Pliocene 40 FMNH-P 14402 Ceratophrys sp. Corral Quemado, late Miocene– Marshall and Patterson, 1981 Catamarca, early Pliocene Argentina 41 MHNM 1560 Ceratophrys sp. Colonia, Uruguay late Pleistocene Rinderknecht, 1998 42 US (MNHN) Ceratophrys sp. Tarija, Bolivia Pleistocene Vergnaud-Grazzini, 1968 43 MMH FMH 85.12.2a Lepidobatrachus Farola MH, BA, Pliocene Tomassini et al., 2011; Nicoli, australis Argentina 2015 44 GHUNL Pam 8633 Lepidobatrachus Quehué, La Pampa, late Miocene Scanferla and Agnolín, 2015, sp. Argentina Nicoli, 2017 45 IANIGLA-PV 112 Lepidobatrachus Huayquerías, late Miocene Turazzini, 2015 sp. Mendoza, Argentina

ceratophryids cannot be determined with rigor and the necessary collection, University of Florida, Florida Museum of Natural analyses of variation within Ceratophrys are beyond the scope of History, U.S.A.; ZUFABC, Coleção Zoológica, Universidade this study. Here we describe a new species of fossil Ceratophrys Federal do ABC, São Bernardo do Campo, Brazil. based on a nearly complete skull. We also provide much needed dis- cussion concerning the anatomy and phylogenetic distribution of cer- atophryid characters, the paleodistribution of the group, and the MATERIALS AND METHODS taxonomic status of Ceratophrys fossils described by Günther (1859). Institutional Abbreviations—cas:herp, Department of Herpetol- Alessandro Marques de Oliveira and the Espeleo Grupo de Rio ogy, California Academy of Sciences, U.S.A.; CM-HERPS, Carne- Claro (EGRIC) collected the holotype (ZUFABC 037), and only gie Museum of Natural History, U.S.A.; DNPM-MP,Museude known specimen, in September 2014. It was found with megafauna Ciências da Terra, Departamento Nacional de Produção Mineral, fossils and other anuran remains, all disarticulated and fragmented Brazil; FCS, Facultad de Ciencias Sociales, Universidad Nacional (Oliveira, 2018). The skull was covered by mud and a carbonate del Centro de la Provincia de Buenos Aires, Argentina; FHC, Fre- crust that was removed mechanically. The geological age of the derico Hennig Collection; FMNH-P, Field Museum of Natural fossil horizon/layer is unknown, but remains of Nothrotherium History, Geology Department, Chicago, Illinois, U.S.A.; GHUNL- maquinense that were found in the same cave during the same Pam, Facultad de Ciencias Exactas y Naturales, Universidad de La paleontological expedition are dated to 13,037 and 12,790 BP Pampa, Santa Rosa, La Pampa, Argentina; IANIGLA-PV, Insti- (before present) (Oliveira, 2018). The holotype ZUFABC 037 is tuto Argentino de Nivología, Glaciología y Ciencias Ambien- housed at the Coleção Zoológica of the Universidade Federal do tales-Paleovertebrados, Argentina; KU, University of Kansas ABC, São Bernardo do Campo–Brazil. Biodiversity Institute, U.S.A.; MACN, Museo Argentino de Cien- The extant and fossil specimens studied were measured directly cias Naturales ‘Bernardino Rivadavia,’ Buenos Aires, Argentina; with a Vernier caliper to the nearest 0.01 mm and through ImageJ MCZ, Museum of Comparative Zoology - Harvard University, Fiji software (Schindelin et al., 2012) on µCT-scanned specimens. U.S.A.; MD-CH, Museo Municipal de Ciencias Naturales ‘Carlos Morphometric measurements follow Reig and Cei (1963), with the Darwin,’ Arroyo Chasicó collection, Punta Alta, Buenos Aires, addition of diameter of the supratemporal fenestra (Table S1). The Argentina; MLP, Museo de La Plata, La Plata, Argentina; osteological nomenclature follows Lynch (1971) and Wild (1997b). MMH, Museo Municipal de Ciencias Naturales Vicente Di The holotype (ZUFABC037) was compared with at least one Martino, Monte Hermoso, Buenos Aires, Argentina; MMP, Colec- specimen from each extant Ceratophryidae species, and to fossil ción de Paleontología de Vertebrados Museo Municipal de Cien- specimens of Ceratophryidae (see Appendix) using a Zeiss Stemi cias Naturales de Mar del Plata ‘Lorenzo Scaglia,’ Mar del Plata, V11 stereomicroscope; and µCT-scanning images provided by the Buenos Aires, Argentina; MHNM, Museo de Historia Natural Laboratory of Computerized Tomography at Museu de Zoologia de Montevidéo, Uruguay; MNHN,Muséumnationald’Histoire da USP (MZUSP). The µCT-scan images were prepared in v naturelle, Paris, France; MZUSP, Museu de Zoologia da Universi- tome × m microfocus µCT scanner Version 2.3.0.1032 (General dade de São Paulo, São Paulo, Brazil; NHMUK, Natural History Electric Company, Wunstorf, DE; Voltage = 85KV, Current = Museum, London, U.K.; NRM, Swedish Museum of Natural 170µA). The parameters of the µCT-scan resulting images are: History, Sweden; PVL, Colección de Paleontología de Vertebrados pixel size (0.2), voxel size (0.04521586), resolution (96 dpi), and del Instituto Miguel Lillo, San Miguel de Tucumán, Argentina; number of images (2500). Specimens were scanned using a tungsten PVSJ, Museo de Ciencias Naturales, Facultad de Ciencias target, an air background medium, and no filter, and were rendered Exatas, Físicas y Naturales, Universidad Nacional de San Juan, as 16-bit TIFF files. Scan data were analysed using 3DSlicer soft- Argentina; UF-H, Herpetology collection, University of Florida, ware, version 4.10.1 (Fedorov et al., 2012). Photos of the fossils Florida Museum of Natural History, U.S.A.; uf:herp, Herpetology were taken with a LGK10 cell phone 13 MP, f/2.2, AF (LTE model). Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-4)

SYSTEMATIC PALEONTOLOGY DESCRIPTION Class AMPHIBIA Linnaeus, 1758 Description of ZUFABC 037 Order ANURA Duméril, 1805 The holotype specimen ZUFABC 037 of Ceratophrys sagani Family CERATOPHRYIDAE Tschudi, 1838 sp. nov. seems to be an adult based on the hyperossification of Genus CERATOPHRYS Wied-Neuwied, 1824 the skull, with synostosis of skull bones (except for the articula- Type Species—Ceratophrys varius Wied-Neuwied, 1824 tion of the vomer and its adjacent bones). The skull bears mark- (currently C. aurita [Raddi, 1823]). edly dermostosed bones (i.e., frontoparietal, nasal, squamosal, Extant Taxon—Neotropical distribution. maxilla, and premaxilla) with a tuberculated ornamentation on its dorsal surface. The nasals are flat, wide, and symmetrical CERATOPHRYS SAGANI, sp. nov. paired bones, that taper anteriorly with dermostosis on their (Figs. 1, 2) dorsal surface. The nasals articulate synostotically with each other medially. Each possesses a bar-shaped maxillary process lat- erally, which sutures with the pars facialis of the maxilla and the Holotype—ZUFABC 037, a nearly complete skull, lacking the zygomatic ramus of the squamosal. Posteriorly, the nasals articu- right premaxilla and right columella. It is well preserved with no late with the anterior edge of their respective frontoparietal. signs of deformation. There is a discrete groove following the axis of the suture Etymology—The specific epithet sagani, in genitive singular, is between the nasals at the posterior extremity. The anterior por- in honor of the eminent North American astronomer Carl Sagan tions of the nasals overlap the sphenethmoid along a suture (1934–1996), whose passion for the communication of science that is poorly ossified. The posterior edges of the nasals form continues to inspire. infralocular flanges, which suture with the zygomatic ramus of Type Locality—Versalles Cave, municipality of Apiaí, state of their respective squamosal to generate a pronounced oblique São Paulo, Brazil UTM 22J 737457/7294530, 715 m (Datum groove that lacks dermostosis. The groove links the orbits to WGS) (Oliveira, 2015). ZUFABC 037 was collected in Versalles the choanae. The choanae aperture is oblong and directed medi- Cave, located within an area privately owned by Purical Mining ally. It is formed anteriorly by contact between the pars facialis of Company, ca. 16 km northeast of the municipality of Apiaí, the maxillae and the anterior portion of the sphenethmoid, pos- state of São Paulo (Fig. 3B). The area belongs to the Alto do teriorly by contact between the maxillary process of the nasal Ribeiro region, which is part of the austral portion of the and the zygomatic ramus of the squamosal, and laterally and pos- Ribeira Belt (de Almeida et al., 1973), one of the three geotec- teriorly by the pars facialis of the maxilla, and the nasal. The tonic that border the San Francisco Craton, of the Bra- bones forming each choanae aperture are well ossified and synos- zilian Atlantic Shield (Theodorovicz, 2014). The area possesses totically fused, except for the visible suture between the nasals typical geomorphological and speleological features, with high and the sphenethmoid. speleomorphological variety (more than 200 recognized caves) The frontoparietals are paired, symmetrical, wide, and heavily and represents important Quaternary paleontological sites ossified bones fused to each other throughout their contact. There (Karmann and Ferrari, 2002). The caves of the region are esti- is tuberculated ornamentation on their dorsal surfaces. Dorsally, mated to age between 2–1.7 million BP (Karmann and Ferrari, there is an interocular crest along the suture of the frontoparie- 2002). The sediments found in these caves present evidence of tals, which becomes clearer between the medial portion of the reworking of the stratigraphic horizon, due to floods (Dias Neto interocular region and the anterior edge of the frontoparietals, et al., 1984). The sediments are of low maturity and possess a where they articulate with the posterior portion of nasals. The low degree of selection, with several sizes of granulometry in con- articulation between the frontoparietals and the nasals forms sonance with decomposing organic matter, blackish coloration part of the infraocular flanges. The posterior portion of each fron- and carbonate cementation at some levels (Dias Neto et al., toparietal invests the otic ramus of their respective squamosal 1984). The fossils found in those caves are usually disjointed dorsally, forming supraorbital flanges. The posterior-most por- and highly fragmented due to the high degree of reworking tions of the frontoparietals invest their respective exoccipital (Ghilardi et al., 2011). and partially cover the epiotic eminence; the frontoparietal Distribution—Known only from the type locality. process has acute edges at this posterior portion. The posterior- Diagnosis—Attributed to Ceratophryidae by the presence of most portion of each frontoparietal articulates synostotically the following characters: (1) cranial exostosis; (2) frontoparie- with the otic ramus of their respective squamosal, forming the tal–squamosal arc; (3) otic ramus of squamosal expansive and crista parotica, which is the posterior flange of supratemporal overlapping the otoccipital; (4) zygomatic ramus of squamosal fenestrae. Ventrolaterally, the lamina perpendicularis is present sutured to the maxilla; (5) teeth monocuspid; (6) teeth non-ped- in the dorsolateral region of the braincase along the entire icellate. Attributed to Ceratophrys by the combination of the fol- length of the frontoparietal. The trochlear nerve foramen lowing characters: (1) palatal shelf of premaxilla lacking; (2) (cranial nerve [CN] IV) is present in ventral view, between the facial lobe of premaxillae deep; (3) palatal shelf of maxilla not orbits and the optic nerve foramen (CN II). evident anteriorly, posteriorly forming a large pterygoid The squamosals are paired, well-developed bones, exhibiting process fused to the pterygoid; (4) nasals large, fused medially; dermostosis on the dorsal surface. The squamosal has three (5) nasal fused to maxilla, nasal-pterygoid relationship not rami. The ventral ramus of the squamosal is wide, elongated evident; (6) nasals broadly fused to frontoparietals; (7) temporal and flat anteroposteriorly, oriented posterolaterally and it is arcade forming supratemporal fenestrae, (8) temporal arcade concave anteriorly. It articulates synostotically with the posterior notched posteriorly; (8) epiotic eminences prominent, concealed ramus of the pterygoid, with the quadrate and the maxilla. Ante- dorsally by the temporal arcade; and (9) cristae paroticae riorly, the otic ramus of the squamosal articulates with the lateral narrow and long. Attributed to the C. aurita group of species edge of the frontoparietal forming the anterior edge of the supra- by the presence of a subquadrangular otic plate. Distinguished temporal fenestra. The otic ramus has a medially directed projec- as a new species within the genus by the following autapomor- tion, which articulates with the otoccipital forming the crista phies: (1) two fenestrae formed by the suture of sphenethmoid parotica. Ventrally, this projection participates in the configur- with vomer in ventral view; (2) epiotic eminences of exoccipital ation of the auditory capsule. The otic ramus of the squamosal with a cotyloid concavity; and (3) columella footplate with three also bears the otic plate (sensu Lynch, 1971), a subquadrangular curved crests. bony projection, which is directed posterolaterally and is well Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-5)

FIGURE 1. Ceratophrys sagani, sp. nov., inter- pretive drawings of skull in A, frontal, B, dorsal, C, lateral, D, posterior, and E, ventral views. Abbreviations: I–XI, cranial nerve fora- mina; c, choana; cp, crista parotica; ee, epiotic eminence; fp, frontoparietal; lc, lateral crest; lp, lateral plate; m, maxilla; n, nasal; oc, occipital condyles; ocs, oblique crest of squamosal; otc, otoccipital; otp, otic plate; pl, palatine; ps, para- sphenoid; pt, pterygoid; ptf, posttemporal fenes- tra; q, quadrate; qj, quadratojugal; sbf, subtemporal fenestra; sf, supratemporal fenestra; soc, supraorbital crest; sph, sphenethmoid; sq, squamosal; v, vomer; vmf, ventromedial fenestra. Scale bars equal 10 mm.

expanded and tapering in dorsolateral view, following the axis of The oblique crest begins at the anterolateral flange of the orbit three convergent crests of the squamosals. The otic plate is highly and extends, diagonally oriented, until it connects with the lateral curved dorsolaterally and presents a dorsal concavity. crest. The medial portion of the otic ramus of the squamosal articu- The zygomatic ramus of the squamosal articulates with the pars lates with the frontoparietal and forms the supraorbital flange. At facialis of the maxilla, and with the anterior ramus of the ptery- the contact between the otic ramus of the squamosal and the fron- goid. Medially, it articulates with the nasals and with the pars toparietal another well-developed crest arises, the supraorbital facialis of the maxillae. From these contacts, two well-developed crest. The supraorbital crest is laterally oriented and meets the crests are formed. The anterior-most crest, called the lateral other crests of the zygomatic ramus of squamosals at its distal crest, results from the contact among the bifurcated anterior portion and extends through the axis of the lateral edge of the ramus of pterygoid, the pars facialis of the maxilla, and the otic plate of otic ramus of squamosal. There are two depressions anterior edge of the zygomatic ramus of the squamosal. The in the orbital arch between the crests of the zygomatic ramus. other crest, termed the oblique crest, is formed by the contact The pterygoids are paired, triradiate, laminate, and symmetri- between the zygomatic ramus of the squamosal and the nasal. cal bones. The pterygoid has three well-developed processes: Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-6)

FIGURE 2. Ceratophrys sagani, sp. nov., ZUFABC037, holotype. A–E, digital renderings of skull in A, frontal, B, dorsal, C, lateral, D, pos- terior, and E, ventral views. F, the left premaxilla in posterior (right) and frontal (left) views. G, the left columella in posterior (upper) and frontal (lower) views. Abbreviations: ap, alary process; cp, crista parotica; ee, epiotic eminence; f, foot- plate; fp, frontoparietal; m, maxilla; n, nasal; oc, occipital condyles; otc, otoccipital; otp, otic plate; pd, pars dentalis; pl, palatine; ps, parasphenoid; pt, pterygoid; sph, sphenethmoid; sq, squamosal; st, stylus; v, vomer; vmf, ventro- medial fenestra. Scale bars equal 10 mm.

anterior, medial, and posterior ramus. The anterior ramus later- premaxilla has ten non-pedicellate teeth, but only seven are ally articulates extensively with the pterygoid process of the well preserved. The base of the alary process of premaxilla maxilla, and, medially, with the distal edge of the palatine and bears dermostosis on its dorsal surface. The alary process of the the sphenethmoid. The anterior ramus forms the lateral edge of premaxilla is roughly perpendicular to the long axis of the pars the interpterygoid vacuity. The medial portion of the anterior dentalis of the premaxilla, but slightly divergent laterally. The ramus of the pterygoid is tilted dorsoventrally and obliquely alary process of the premaxilla articulates ventrally with the arranged along its length, which is flattened at its distal edge. anterior portion of the sphenethmoid. The distal edge of the The medial ramus of the pterygoid is a tapering portion that alary process is not preserved in the fossil. The maxillary ramus articulates diagonally with the distal edge of the ala of the para- of the premaxilla is long, ‘V’-shaped in lateral view, and articu- sphenoid and with the ventrolateral edge of the otoccipital, lates ventrally with the pars palatina of the maxilla. The septo- forming the posterior edge of interpterygoid vacuity. The pos- maxillae should be in the olfactory capsule, but they are not terior ramus of the pterygoid is a posterolaterally curved preserved in the fossil. portion, which articulates laterally with the medial edge of the The maxillae have three portions: pars dentalis, pars palatina, ventral ramus of the squamosal and posteroventrally with the and pars facialis. The pars dentalis is compact and bears small pars articularis of the quadrate. hollows internally, corresponding to the pulp cavity and the The quadrate is a discrete bone, constricted medially and teeth. The teeth are not well preserved; based on the preserved expanded laterally. It is heavily synostosed with the quadratojugals, roots, the paired maxillae could bear at least 40 teeth. Most the posterior ramus of the pterygoid and the ventral ramus of the teeth are worn and deteriorated, except eight and nine teeth squamosal, the articulations are obscured by synostosis. There is a from the right and left maxilla, respectively, are preserved in condyle at the medial portion of the quadrate, result of the articu- good condition. Those teeth are non-pedicellate and fang-like. lation with the posterior ramus of the pterygoid and posterolater- The distal edge of the pars dentalis of the maxilla is ‘V’-shaped ally with the ventral ramus of the squamosals. The sutures in lateral view and overlaps the anterior part of the quadratoju- between the posterior portion of the pars palatina and the pars gal. The pars palatina of the maxilla is reduced, investing dorsally, facialis of the maxilla, quadratojugal, ventral and zygomatic rami the pars facialis, and exhibits an internal hollow along its entire of the squamosal form the subtemporal fenestra, which is an ellip- length. The pars facialis of the maxilla has dermostosis on its soidal opening lateral to the cranium. The quadratojugals are dorsal surface. It articulates dorsally with the nasal and with the paired, massive, and ‘V’-shaped bones in lateral view. The anterior zygomatic ramus of the squamosal; and ventrally with the anterior portion of each is cylindrical and articulates anteriorly with the pars portion of sphenethmoid and the lateral edges of the vomer, the dentalis and the pars palatina of the maxilla and its posterior palatine, and the pterygoid. portion articulates with the quadrate and the squamosal. The sphenethmoid is at the central cranium axis, it is not exo- The premaxillae are paired bones. Only the left premaxilla is stosed and has three portions, that articulate conspicuously with preserved in the fossil (Fig. 2F). The pars dentalis of the adjacent bones. The anterior portion is a wide, rounded, and Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-7)

FIGURE 3. Distribution of extant and fossil species of Ceratophrys. A, geographical distribution of extant species of Ceratophrys and several fossil specimens of Ceratophrys, after the data in Table 1. Many fossil specimens share the same fossil locality. The area in the black rectangular frame is enlarged and shown in detail. The black arrow indicates the type locality of C. testudo, known only from the holotype. B, location (white star) of the Versalles Cave, Apiaí municipality, state of São Paulo, southeastern Brazil (UTM 22J 737457/7294530, 715 m [Datum WGS]).

anteriorly directed projection (Fig. 2A); below this projection are laminae. The anterior portion of the laminae bears an abducens two olfactory nerve foramina (CN I). The anterior portion articu- nerve foramen (CN VI), whereas the posterior portion of the lates dorsally with the anterior edge of the nasals. The dorsum of laminae bears an optic nerve foramen (CN II). The posterior the sphenethmoid articulates laterally with the pars facialis of the portion of the sphenethmoid articulates anteriorly with the proxi- maxilla. The sphenethmoid articulates with anterior edge of the mal portion of the palatine, laterally with the lamina perpendicu- vomer, forming a fenestra that we propose to call the ventromedial laris of the frontoparietals, and posteriorly with the otoccipital. fenestra (Figs. 1B, 2B). The medial portion of the sphenethmoid is Laterally it articulates with the anterior edge of the cultriform reduced, triangular, and slightly concave in ventral view. It articu- process of parasphenoid. All sutures are obscured by extensive lates synostotically with the vomer anteriorly and laterally, and the synostosis. There is no dorsal exposure of the sphenethmoid. palatine posteriorly at the level of the planum antorbitale. The pos- The vomers are anterolaterally oriented paired bones, each terior portion of the sphenethmoid is bifurcated, with broad with an anterior and a posterior portion. The anterior portion Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-8) of each vomer articulates with the sphenethmoid throughout its trochanter or apophysis, which has a concave ventral surface, entire width. This suture is not heavily ossified in contrast to all and three curved crests (Fig. 2G). One crest is dorsal, initiating the other sutures of the vomers. A foramen penetrates the at the posteromedial portion of footplate and extending to the suture between the anterior portion of the sphenethmoid and anterodorsal end; the second crest is ventral, following the the vomer. To our knowledge, this foramen is unique among same conformation of the dorsal crest, but forming one of the anurans. The distal edge of each vomer invests the pars facialis axes that structure the concavity; the third crest extends of the respective maxillae. The posterior portion of each vomer through the posteromedial portion of columella footplate until presents a laterally directed lamina near the pars odontoides, the ventral axis structuring the concavity, forming an accentuated the postchoanal process, initiating medially and extending for curve. The stylus is not entirely preserved in the fossil. two-thirds of the length of the vomer. The extremities of the post- choanal process are not preserved in the fossil, preventing further Comparison with Extant Species of Ceratophrys description and comparison. The posterior portion of each vomer articulates medially with its respective palatine, the anterior edge Ceratophrys sagani, sp. nov. differs from all other living and of the cultriform process of the parasphenoid, and the medial fossil species of Ceratophryidae by bearing two fenestrae on portion of the sphenethmoid. The articulations are obscured by the suture between the anterior portion of the sphenethmoid synostosis. Vomerine teeth and dental ridges are not preserved. and the anterior edge of the vomer. Our comparison indicates The palatines are elongated, laterally oriented, and do not meet that it is an autapomorphy. We noted a concavity in living speci- each other medially. The proximal edge of each palatine articu- mens of C. joazeirensis (MZUSP 142284) and a discrete crest in lates anteriorly with the sphenethmoid and the vomer with a C. aurita (cas:herp:84998) specimen topologically congruent to high degree of synostosis. The distal edge of each palatine the ventromedial fenestrae of C. sagani. The new taxon differs expands and invest the pars facialis of the respective maxilla ven- from all other extant species of Ceratophryidae by presenting trally and articulates with the pterygoid dorsally. three crests on the footplate of the columella (two ventral and The parasphenoid is a ‘T’-shaped bone formed by two sym- one dorsal; Fig. 2G). We also observed a columella only with a metrical, laterally oriented alae, and a single, anteriorly oriented ventral crest in Ceratophrys joazeirensis, whereas other species cultriform process. Each ala articulates broadly anteriorly and of Ceratophrys bear two plectral apophyses on columella (Perí, posteriorly with the otoccipital and anterolaterally with the pter- 1993). In posterior view, the posterior-most surface of epiotic emi- ygoid. The alae are well developed and possess a crest along their nences of all extant and extinct species of Ceratophrys species are anterior edge resulting from contact with the medial ramus of the flat, and there are dorsolateral protuberances, recorded here in pterygoid. Each ala has an anteroventrally-curved flange with the C. calcarata and C. cornuta of the C. cornuta group and in concavity directed posteriorly, resulting from the articulation with C. aurita and C. joazeirensis, of the C. aurita group. In Ceratophrys the posterior portion of otoccipital, where the auditory nerve sagani sp. nov. the dorsolateral protuberances are absent, and this foramen (CN VIII) is located on the right concavity and the fossil species is autapomorphic in having a concavity on the pos- jugular nerve foramen (CN IX-XI) on the left concavity. A protu- terior surface of epiotic eminences. berance is present at the distal edge of each alae resulting from Ceratophrys sagani has a wide and rounded projection on the contact with the otoccipital and medial ramus of pterygoid. The anterior-most portion of the sphenethmoid, differing from cultriform process of the parasphenoid articulates laterally with C. joazeirensis, C. cranwelli (narrow and rounded), and from the lamina perpendicularis of each frontoparietal, and the C. cornuta (narrow and truncated). In C. aurita, this projection medial portion of the sphenethmoid and otoccipital. The articula- is consistently wide, but polymorphic in being either truncated tion between the parasphenoid and the otoccipital forms two for- or rounded. amina—the optic nerve foramen (CN II), anteriorly and the Ceratophrys sagani exhibits a subquadrangular otic plate, oculomotor nerve foramen (CN III) posteriorly. The sutures are which is a diagnostic character of the C. aurita species group. not clear because of the high degree of synostosis. Further, C. sagani and C. aurita present the otic plate curved dor- The prootics and the exoccipitals are continuous and indistin- sally, whereas other species within the group bear a ventrally guishable as the otoccipital (Lynch, 1971). The internal structure curved otic plate. Ceratophrys sagani and C. aurita are unique of this compound element is dominated by its spongy component in having a zygomatic ramus of the squamosal that is wide and with only a thin lamellar wall. Ventrally, the otoccipital articulates bears a crest on its dorsal surface, differing from the narrow zygo- with the parasphenoid alae and the medial rami of the pterygoids. matic ramus of C. ornata and C. joazeirensis (Figs. 1B, 2B). Dorsally, it articulates with the lamina perpendicularis of the fron- Additionally, C. aurita and C. sagani share the presence of two toparietal. Anteriorly, the prootics articulate with the posterior depressions at the orbital arch between the crests of the zygo- portion of sphenethmoid, where the foramina for the CN II are matic ramus of the squamosal. In dorsal view, the epiotic emi- formed. The sutures between those bones are obscured by synos- nences of C. sagani resemble the slender structures of C. aurita tosis. The posterior portion of otoccipital forms the posteromedial and differ from the elliptical eminences of C. joazeirensis parts of the auditory capsules and the occipital condyles, which (Vieira et al., 2006). are juxtaposed (Type II; Lynch 1971), massive, and lacking a con- The alary process of the premaxilla (Fig. 2F)inCeratophrys stricted base, with rounded and ventromedially-to-dorsolaterally sagani is not as narrow as in C. joazeirensis, resembling that in angled articular surfaces. The jugular and auditory nerve fora- C. aurita and C. cranwelli. There is a rounded dermostosis at mina (CN VIII) are located above the occipital condyle. The the external surface of the alary process of the premaxilla (near epiotic eminences are located above the foramen magnum, and the base of the alary process) in C. sagani sp. nov., and such a are triangular protuberances in dorsal view, partially covered by similar dermostosis is polymorphic in C. aurita specimens (see the processus posterior of frontoparietals and with a cotyloid con- Gayer 1984). cavity, in posterior view. The plectral apparatus, also known as the columella, is a Comparison with Fossils of Ceratophryidae slender, cylindrical bone, that is enlarged at its proximal edge. It is located in the middle ear, below the otic ramus of the squa- Ceratophrys sagani is the second largest (skull width = 70 mm) mosal and associated with the fenestra ovalis of the otoccipital. of the known fossil Ceratophryidae, being only slightly smaller Three portions are recognized from proximal to distal end: foot- than C. ameghinorum (skull width = 72 mm; MACN 14318; plate, stylus, and distal cartilaginous elements that connect to the Fig. S1). In addition to its overall size, the skull of the new external ear. The columella footplate is composed of a complex species differs proportionately from those of other fossil taxa. Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-9)

The maximum bi-narial diameter is 6.9% larger than in the literature. By analyzing the anatomical axes of the µCT-scan C. ameghinorum, and so are the maximum bi-premaxillary diam- images of the Ceratophrys specimens under analyses, we noted eter (3.04% larger), minimum interorbital diameter (10% larger), that the region of contact between the sphenethmoid and the height of premaxillae alary process (9.16% larger), maximum vomer in C. aurita, C. joazeirensis, and C. cornuta (specifically in cranium height (5% larger), and diameter of supratemporal the portion of the ventromedial fenestra of C. sagani) exhibits fenestrae (18.75% larger). Ceratophrys sagani also has a curved a thin and compact layer of bone, whereas in other species of posterior edge of the otic plate, differing from that of Ceratophrys the bone in this portion is spongy. The origin of the C. ameghinorum where the posterior edge of the otic plate is ventromedial fenestra is unknown, and could be the retention of straight, well-developed, and dorsally projected. a larval character (e.g., an accessory nerve foramen). Both C. sagani and C. rusconii (MACN 19744; Fig. S2) have The epiotic eminences of the otoccipital probably provide a supratemporal and subtemporal fenestrae, with the epiotic emi- bony surface for muscle insertion (Gayer, 1984). The variation nences partially covered by the processus posterior of the fronto- of these structures is not well explored, although Vieira et al. parietal and the subquadrangular otic plate of the squamosal. (2006) noted shape differences between C. joazeirensis (elliptical) However, the projection of the anterior portion of the spheneth- and C. aurita (slender) in dorsal view. We observed C. aurita, moid is well-developed in C. sagani, whereas it is short and C. calcarata, C. cornuta, and C. joazeirensis have dorsolateral pro- rounded in C. rusconii. The otic plate of C. sagani is curved dor- tuberances in the epiotic eminences of the otoccipital, and, in pos- sally at its distal edge but ventrally concave in C. rusconii (the terior view, the epiotic eminences surfaces are flat in the living latter resembling C. ornata). and fossil species of Ceratophryidae, except for the new species Ceratophrys sagani resembles the fossil specimens (NHMUK C. sagani (epiotic eminence with a concavity on the posterior 18895/6) of Ceratophrys from the Pleistocene of Lagoa Santa surface, Fig. 2D). (Minas Gerais, Brazil). These specimens were originally classified The columellar footplate of Ceratophryidae is generally by Günther (1859)asC. cornuta. They were subsequently concave/globous, without any ornamentation (e.g., Lepidobatrachus identified as C. aurita without justification (Lynch, 1971; Báez and Chacophrys), with an anterior and posterior plectral and Gasparini, 1977) and proposed as closely related to the apophysis (e.g., C. cranwelli and C. ornata) or a ventral crest [C. aurita-C. joazeirensis] clade (Faivovich et al., 2014). The (e.g., C. joazeirensis). The development of these apophyses is fossil classified by Günther (1859) requires revision. It resembles ontogenetically variable and sexually dimorphic (Perí, 1993). C. aurita in the presence of posterior margin of dermocranium Ceratophrys sagani sp. nov. is unique among species of Cerato- indented, supratemporal fenestrae, subquadrate otic plate of phryidae in having the footplate of the columella ornamented squamosal, three crests on the squamosal and the maxilla, and with three curved crests (Fig. 2G). truncated and flat anterior portion of sphenethmoid. Herein, it is referred to as Ceratophrys cf. C. aurita (NHMUK 18895/6), in Geographic Distribution of Ceratophryidae the lack of a review of characters and phylogenetic proposal. In sum, Ceratophrys sagani differs from Ceratophrys cf. Ceratophrys sagani, sp. nov. represents the third formally C. aurita (NHMUK 18895/6), C. ameghinorum, C. rusconii and described record of a fossil of Ceratophryidae from Brazil and all other Ceratophrys fossil species based on the presence of one of the most northern records for the group (Table 1; epiotic eminences with concave surface in posterior view (Figs. Fig. 3A). The great majority of Ceratophryidae fossils are 1D, 2D); columella footplate with three curved crests; and ventro- located in southern South America. There are two possible expla- medial fenestra along the vomer-sphenethmoid contact. nations for this paleodistribution: (1) the ancient distribution of Ceratophrys species was concentrated in the south and sub- sequently expanded northward to the recent distribution of the DISCUSSION group; or (2) the group has a deep history in the north but the Ceratophrys sagani is a new species of Ceratophrys that bears a fossil evidence is hindered by the poor preservational potential subquadrangular otic plate indicative of close relation to the of northern environments (e.g., Amazonian and Atlantic C. aurita species group. The new species is autapomorphic Forests). It is certainly possible that the prevalence of material among the ceratophryids in having: (1) two fenestrae formed on in southern South America simply reflects the strong fossil collec- the suture between sphenethmoid and vomer, as observed in tion efforts of anuran species in Argentina. ventral view; (2) epiotic eminences of otoccipital with a cotyloid The majority of the fossils belonging to Ceratophrys are found concavity; (3) columellar footplate with three curved crests. The within the geographical distribution range of living species of the recent recovery of Baurubatrachus pricei phylogenetically genus, the C. aurita group in particular (Fig. 3). However, there outside Ceratophryidae (Nicoli et al., 2016; Báez and Gómez, are some outliers: the specimens Ceratophrys sp. (PVSJ 284, 2018), makes Ceratophrys sagani the single extinct species of Cer- upper Miocene of Ullum Valley, San Juan), Ceratophrys sp. atophryidae discovered from the fossil record of Brazil (the third (FMNH-P.14402, upper Miocene–lower Pliocene of Corral ceratophyrid fossil from Brazil), and one of the northern-most Quemado, Catamarca), Ceratophrys sp. and Ceratophrys ornata records for the group. (MNHN unnumbered specimens; Vergnaud-Grazzini 1968, Pleis- tocene of Tarija and Chuquisaca, respectively), located west of the distribution of the living species Ceratophrys cranwelli, and Contribution to Character Variation in Ceratophryidae Ceratophrys sp. (MD-CH-06-165 upper Miocene of Arroyo Although the ceratophryid skull has been extensively studied, Chasicó) located south of the distribution of C. ornata. many of its characters remain poorly understood. The anterior The distribution of all Lepidobatrachus fossil specimens, i.e., portion of the sphenethmoid was recognized as present by Lepidobatrachus sp. (IANIGLA-PV 112, upper Miocene), Gayer (1976) and Perí (1994) but was deemed absent in Lepidobatrachus australis (MMH FMH 85-12-2a, Pliocene) and Wild (1997b), who recognized the anterior portion of the sphe- Lepidobatrachus sp. (GHUNL-Pam 8633, upper Miocene) are nethmoid as part of the vomer (Fig. 1B). Perí (1994) considered more than 250 km south to the southern limit of the distribution that this anterior portion is well developed in Ceratophrys and range of extant species (Fig. S3). Lepidobatrachus, perhaps the result of a densely ossified skull Vieira et al. (2018) hypothesized that the species of (Gayer, 1976). The sphenethmoid and the vomer are fused in Cer- Ceratophrys and L. asper had a wider distribution during the atophryidae, and we observed ornamentation on this region in the Last Glacial Maximum (∼21,500 BP). The actual distribution of specimen (C. joazeirensis MZUSP 142284) that is not mentioned in fossils can corroborate this assertion indicating that, since the Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-10) late Miocene, the paleodistribution of some species of Cerato- paleontológico e geológico no médio curso do Ribeira de Iguape, phryidae expanded to areas west and south of the current Sao Paulo. distribution. Duméril, A. M. C. 1805. Zoologie analytique, ou méthode naturelle de classification des animaux, rendue plus facile à l’aide de tableaux synoptiques. Allais, Paris, 344 pp. Evans, S. E., M. E. Jones, and D. W. Krause. 2008. A giant with South ACKNOWLEDGMENTS American affinities from the of . Proceedings of the National Academy of Sciences 105:2951–2956. We are very grateful to the São Paulo Research Foundation Fabrezi, M. 2006. Morphological evolution of Ceratophryinae (Anura, (FAPESP) (2017/04849-1 to LAB; 2017/11768-8 to CMDS) and ). Journal of Zoological Systematics and the National Council for Scientific and Technological Develop- Evolutionary Research 44:153–166. ment (CNPq) grants (305630/2016-4 to CMDS), and to UFABC Faivovich, J. 1994. La distribución del género Lepidobatrachus (Budgett, logistical support. This work was also partially supported by the 1899) (: Ceratophryinae). Acta Zoologica Lilloana – CAPES–Finance Code 001. We thank A. Oliveira (UFABC) 43:102 115. – Faivovich, J., L. Nicoli, B. L. Blotto, M. O. Pereyra, D. Baldo, J. S. and the EGRIC Espeleo Grupo de Rio Claro, collectors of the Barrionuevo, M. Fabrezi, E. R. Wild, and C. F. Haddad. 2014. Big, fossil specimen. M.T. Rodrigues (IBUSP) provided stereomicro- bad, and beautiful: phylogenetic relationships of the horned scope access. H. Zaher (MZUSP) allowed access to the micro- (Anura: Ceratophryidae). South American Journal of Herpetology CT facilities at MZUSP and A. Carvalho (MZUSP) performed 9:207–227. the scanning. A. Benetti (MZUSP) and T. Grant (MZUSP) Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, allowed access to the collection of MZUSP. We S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. thank M. Ezcurra (MACN) and M. Reguero (MLP) for access Aylward, J. V. Miller, S. Pieper, and R. Kikinisa. 2012. 3D Slicer as to their respective collections. We thank I. S. Nunes (UNESP) an image computing platform for the Quantitative Imaging – and H. R. da Silva (UFFRJ), for comments on the first draft of Network. Magnetic Resonance Imaging 30:1323 1341. Feng, Y. J., D. C. Blackburn, D. Liang, D. M. Hillis, D. B. Wake, D. C. the text, and J. Jia and an anonymous reviewer for the effort Cannatella, and P. Zhang. 2017. Phylogenomics reveals rapid, simul- and suggestions that strongly improved the manuscript. taneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences 114:E5864–E5870. ORCID Fernicola, J. C. 2001. Una nueva especie de Ceratophrys (Anura, Lucas A. Barcelos http://orcid.org/0000-0003-4911-1695 Leptodactylidae) en el Neógeno de la provincia de Buenos Aires, Diego Almeida-Silva http://orcid.org/0000-0002-9186-4685 Argentina. Ameghiniana 38:385–391. Charles M. D. Santos http://orcid.org/0000-0001-5577-0799 Frenguelli, J. 1921. Los terrenos de la costa atlántica en los alrededores de Miramar (prov. de Buenos Aires) y sus correlaciones. Boletín de la Vanessa K. Verdade http://orcid.org/0000-0001-8990-0571 Academia Nacional de Ciencias de Córdoba 24:325–485. Frost, D. R. 2019. Amphibian Species of the World: An Online Reference. LITERATURE CITED Version 6.0. American Museum of Natural History, New York, USA. Available at research.amnh.org/herpetology/amphibia/index.html Agnolin, F. 2005. Un nuevo escuerzo (Anura, Leptodactylidae) del (10/02/2019). Accessed July 1, 2019. “Ensenadense” Pleistoceno inferior–medio de la Provincia de Frost, D. R., T. Grant, J. Faivovich, R. H. Bain, A. Haas, C. F. B. Haddad, Buenos Aires (Argentina), con notas sobre la clasificación del R. O. De Sa, A. Channing, M. Wilkinson, S. C. Donnellan, C. J. género Ceratophrys. Studia Geologica Salmanticensia 41:45–55. Raxworthy, J. A. Campbell, B. L. Blotto, P. Moler, R. C. Drewes, Agnolin, F. 2012. A new Calyptocephalellidae (Anura, Neobatrachia) from R. A. Nussbaum, J. D. Lynch, D. M. Green, and W. C. Wheeler. the Upper Cretaceous of Patagonia, Argentina, with comments on its 2006. The Amphibian Tree of Life. Bulletin of the American systematic position. Studia Geologica Salmanticensia 48:129–178. Museum of Natural History 297:1–291. Ameghino, F. 1899. Sinopsis geológico-paleontológica. En segundo censo Gayer, S. M. P. 1976. Osteologia do crânio e mandíbula de Ceratophrys nacional de la República Argentina. 1898. Suplemento (adiciones y aurita (Raddi, 1823), (Anura, Acosmanura, Leptodactylidae, correcciones), Julio de 1899. Impf. Encuadernacion “La Libertad.” Ceratophryinae). M.Sc. thesis. Universidade Federal do Rio Báez, A. M., and Z. B. Gasparini. 1977. Orígenes y evolución de los Grande do Sul, Rio Grande do Sul, Brazil, 72 pp. anfíbios y del Cenozoico de América del Sur. Acta Gayer, S. M. P. 1984. Osteologia do sincrânio de Ceratophrys aurita Geologica Lilloana 14:150–232. (Raddi, 1823) (Anura, Leptodactylidae). Revista Brasileira de Báez, A. M., and R. O Gómez. 2018. Dealing with homoplasy: osteology Zoologia 31:113–137. and phylogenetic relationships of the bizarre neobatrachian frog Ghilardi, A. M., M. A. Fernandes, and M. E. Bichuette. 2011. Megafauna Baurubatrachus pricei from the Upper Cretaceous of Brazil. from the Late Pleistocene–Holocene deposits of the Upper Ribeira Journal of Systematic Palaeontology 16:279–308. karst area, southeast Brazil. Quaternary International 245:369–378. Barcelos, L. A., and V. K. Verdade. 2019. A new Ceratophrys aurita Günther, A. C. L. G. 1859. Sexual differences found in bones of some (Ceratophryidae: Anura) fossil specimen from late Pleistocene– Recent and fossil species of frogs and fishes. Annals and Magazine early Holocene of Versalles cave, Southeastern Brazil. Anais do 9° of Natural History 3:1–13. Congresso Brasileiro de Herpetologia, Campinas, São Paulo, Brazil. Hutter, C. R., S. M. Lambert, and J. J. Wiens. 2017. Rapid diversification Barcelos, L. A., C. M. D. Santos, and V. K. Verdade. 2018. A new fossil of and time explain amphibian richness at different scales in the tropical Ceratophryidae, late Pleistocene–early Holocene, Brazil. Andes, Earth’s most biodiverse hotspot. The American Naturalist Suplemento Resúmenes XIX Congreso Argentino De 190:828–843. Herpetología, La Plata, Buenos Aires, Argentina 4:17. Karmann, I., and J. A. Ferrari. 2002. Carste e cavernas do Parque Estadual Contreras, V. H., and J. C. Acosta. 1998. Presencia de un anuro Turístico do Alto Ribeira (PETAR), SP in C. Schobbenhaus, (Ceratophryidae) en el Mioceno Tardío de la provincia de San D. D. A. Campos, E. D. Queiroz, M. Winge, and M. L. C. Berbert- Juan, Argentina: significado paleoecológico, paleoclimático y Born (eds.), Sítios geológicos e paleontológicos do Brasil. DNPM, paleozoogeográfico. Boletín de la Sociedad de Biología de CPRM, SIGEP Brasília, Brazil. Concepción, 69:83–88. Jetz, W., and R. A. Pyron. 2018. The interplay of past diversification and de Almeida, F. F. M., G. Amaral, U. G. Cordani, and K. Kawashita. 1973. evolutionary isolation with present imperilment across the amphi- The Evolution of the South American Cratonic Margin bian tree of life. Nature Ecology and Evolution 2:850–858. South of the Amazon River; pp. 411–446 in A. E. M. Nairn and F. G. Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, Secundum Stehli (eds), The South Atlantic. Springer, Boston. Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Dias Neto, C. M., P. A. Blasiis, C. N. B. Barreto, I. Karmann, and E. M. Synonymis, Locis. Tomus I. Editio decima, reformata. Laurentii Robran. 1984. Abismo “ponta de flecha” um projeto arqueológico, Salvii, Stockholm, 824 pp. Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-11)

Lynch, J. D. 1971. Evolutionary relationships, osteology, and zoogeogra- Rovereto, C. 1914. Los estratos araucanos y sus fósiles. Anales del Museo phy of leptodactyloid frogs. University of Kansas Museum of Nacional Historia Natural de Buenos Aires 25:1–247. Natural History, Miscellaneous Publications 53:1–238. Rusconi, C. 1932. La presencia de anfibios (“Ecaudata”) y de aves fósiles Lynch, J. D. 1982. Relationships of the frogs of the genus Ceratophrys en el piso ensenadense de Buenos Aires. Anales de la Sociedad (Leptodactylidae) and their bearing on hypotheses of Pleistocene Científica Argentina 113:145–149. forest refugia in South America and punctuated equilibria. Sabbag, A. F., M. L. Lyra, K. R. Zamudio, C. F. Haddad, R. N. Feio, F. S. Systematic Biology 31:166–179. Leite, J. L. Gasparini, and C. A. Brasileiro. 2018. Molecular phylo- Marshall, L. G., and B. Patterson. 1981. Geology and geochronology of the geny of Neotropical rock frogs reveals a long history of vicariant mammal-bearing Tertiary of the valle de Santa María and río Corral diversification in the Atlantic forest. Molecular Phylogenetics and Quemado, Catamarca province, Argentina. Fieldiana: Geology 9:1–80. Evolution 122:142–156. Maxson, L. R., and R. Ruibal. 1988. Relationships of frogs in the leptodac- Scanferla, A., and F. L. Agnolín. 2015. Nuevos aportes al conocimiento de tylid subfamily Ceratophryinae. Journal of Herpetology 22:228–231. la herpetofauna de la Formación Cerro Azul (Mioceno superior), Mercadal de Barrio, I. T., and A. Barrio. 2002. Tetraploidy in Ceratophrys Provincia de La Pampa, Argentina. Papéis Avulsos de Zoologia (Anura, Leptodactylidae), analysis of the fossil record. Iheringia, 55:323–333. Série Zoologia 92:17–31. Schindelin, J., I. Arganda-Carreras, and E. Frise. 2012. Fiji: an open-source Nicoli, L. 2014. Reappraisal of a ceratophryid frog from the Oligocene of platform for biological-image analysis. Nature Methods 9:676–682. Patagonia: assignation to Ceratophrys and new insight about its pro- Stoessel, L., S. Bogan, G. Martínez, and F. L. Agnolin. 2008. Implicaciones venance. Ameghiniana 51:184–194. paleoambientales de la presencia del género Ceratophrys (Anura, Nicoli, L. 2015. New fossil species of the extant genus Lepidobatrachus Ceratophryinae) en contextos arqueológicos de la transición (Anura, Ceratophryidae) from the Late Miocene–Early Pliocene of Pampeano-Patagónica en el Holoceno Tardío (curso inferior del central Argentina. Journal of Vertebrate Paleontology 35:e981636. Río Colorado, Argentina). Magallania (Punta Arenas) 36:195–203. Nicoli, L. 2016. A fossil ceratophryid anuran from the Late Miocene of Streicher, J. W., E. C. Miller, P. C. Guerrero, C. Correa, J. C. Ortiz, A. J. west-central Argentina. Salamandra 52:153–160. Crawford, M. R. Pie, and J. J. Wiens. 2018. Evaluating methods for Nicoli, L. 2017. The presence of Lepidobatrachus (Anura, phylogenomic analyses, and a new phylogeny for a major frog Ceratophryidae) in the Neogene of the , clade () based on 2214 loci. Molecular Phylogenetics and Argentina. Ameghiniana 54:700–706. Evolution 119:128–143. Nicoli, L., P. Muzzopappa, and J. Faivovich. 2016. The taxonomic place- Theodorovicz, A. 2014. Geoparque Alto Vale do Ribeira: proposta. ment of the Miocene Patagonian frog Wawelia gerholdi Preservação do Patrimônio Geológico. Visibilidade e (Amphibia: Anura). Alcheringa: An Australasian Journal of Desenvolvimento Através do Geoturismo. Palaeontology 40:153–160. Tomassini, R. L., F. Agnolin, and C. Oliva. 2011. First fossil record of the Nicoli, L., R. L. Tomassini, and C. I. Montalvo. 2017. The oldest record of genus Lepidobatrachus Budgett, 1899 (Anura, Ceratophryidae), Ceratophrys (Anura, Ceratophryidae) from the Late Miocene of from the early Pliocene of Argentina. Journal of Vertebrate central Argentina. Journal of Vertebrate Paleontology 37:e1261360. Paleontology 31:1005–1009. Oliveira, A. M. 2015. Relatório de Prospecção paleontológica na caverna Tschudi, J. J. 1838. Classification der Batrachier mit Berücksichtigung der fos- Versalles, bairro Caximba, Apiaí, SP (Projeto Caximba). EGRIC. silen Thiere dieser Abtheilung der Reptilien. Petitpierre, Neuchâtel, Oliveira, A. M. 2018. Megafauna Cenozóica do continente Americano: Mémoires de la Société des Sciences Naturelles de Neuchâtel, 99 pp. considerações sobre ecomorfologia, paleoecologia, evolução e Turazzini, G. F. 2015. Registro de un nuevo taxón fosil afín a paleobiogeografia. Ph.D. dissertation, Universidade Federal do Lepidobatrachus (Anura: Ceratophryidae) en la Formación ABC, São Paulo, Brazil. Huayquerías (Mioceno Superior), Provincia de Mendoza, Pardiñas, U. F. 2001. Condiciones áridas durante el Holoceno Temprano Argentina. Libro de Resúmenes de la Reunión de en el sudoeste de la provincia de Buenos Aires (Argentina): verteb- Comunicaciones–Asociación Paleontológica Argentina 17. rados y tafonomia. Ameghiniana 38:227–236. Urrutia, J. J., and S. D. Rosset. 2006. Primer registro de Ceratophrys Wied- Pérez-Ben, C. M., G. F. Turazzini, and R. O. Gómez. 2019. A Last Glacial Neuwied (Anura, Ceratophryidae) en la Formación Arroyo Chasicó anuran assemblage from the inland Pampas of South America pro- (Mioceno Tardío) de la provincia de Buenos Aires, Argentina. vides insights into climate and environments during Marine Ameghiniana, Suplemento Resumenes 43:56R. Isotope Stage 3. Journal of Vertebrate Paleontology 39:e1627365. Vergnaud-Grazzini, C. 1968. Amphibiens pléistocènes de Bolivie. Bulletin Perí, S. I. 1993. Ceratophrys (Anura, Leptodactylidae) en el Holoceno de de la Société géologique de France 7:688–695. Laguna Los Tres Reyes, Provincia de Buenos Aires, Argentina. Vieira, K. S., A. P. Z. Silva, and C. Arzabe. 2006. Cranial morphology and Ameghiniana 30:3–7. karyotypic analysis of Ceratophrys joazeirensis (Anura: Perí, S. I. 1994. Relaciones evolutivas de las especies de la subfamilia Ceratophryidae, Ceratophrynae): taxonomic considerations. Ceratophryinae (Anura: Leptodactylidae). Ph.D. dissertation, Zootaxa 1320:57–68. Facultad de Ciencias Naturales y Museo, Universidad Nacional de Vieira, K. S., P.F. G. Montenegro, G. G. Santana, and W. L. da Silva Vieira. La Plata, La Plata, Buenos Aires, 223 pp. 2018. Effect of climate change on distribution of species of common Pyron, R. A., and J. J. Wiens. 2011. A large-scale phylogeny of Amphibia horned frogs in South America. PLoS One 13:9. including over 2,800 species, and a revised classification of extant Wied-Neuwied, M. Z. 1824. Verzeichnis der Amphibien welche in zweiten frogs, salamanders, and caecilians. Molecular Phylogenetics and Bande der Naturgeschichte Brasiliens von Prinz Max von Neuwied Evolution 61:543–583. werden beschreiben Werden. Isis von Oken 14:661–673. Raddi, G. 1823. Continuazione della descrizione dei rettili Brasiliani. Wild, E. 1997a. Description of the adult skeleton and developmental Memorie della Societa Italiana delle Scienze. Modena 19:58–73. osteology of the hyperossified horned frog, Ceratophrys cornuta Reig, O. A. 1958. Notas para una actualización del conocimiento de la (Anura: Leptodactylidae). Journal of Morphology 232:169–206. fauna de la Formación Chapadmalal. I. Lista faunística preliminar. Wild, E. 1997b. The ontogeny and phylogeny of ceratophryine frogs Acta Geológica Lilloana 2:241–253. (Anura: Leptodactylidae). Ph.D. dissertation, University of Kansas, Reig, O. A., and J. M. Cei. 1963. Elucidación morfológico-estadística de Lawrence, Kansas. las entidades del género Lepidobatrachus Budgett (Anura, Ceratophrynidae), con cosideraciones sobre la extensión del distrito Submitted August 22, 2019; revisions received July 11, 2020; chaqueño del dominio zoogeográfico subtropical. Physis XXIV accepted August 5, 2020. 67:181–204. Handling Editor: Gabriel Bever. Reilly, S. M., E. O. Wiley, and D. J. Meinhardt. 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60:119–143. APPENDIX 1. Examined specimens Rinderknecht, A. 1998. Nuevos microvertebrados fósiles para el Dry Skeletons Pleistoceno Superior del Uruguay (Amphibia, Reptilia, Aves). Comunicaciones Paleontológicas del Museo de Historia Natural de Ceratophrys aurita MZUSP 22976; MZUSP 61114(2); DNPM- Montevideo 30:133–144. MP 1-AR; KU223818; KU98129. Barcelos et al.—New fossil Ceratophrys from Brazil (e1811293-12)

Cleaned and Stained µCT-scanned and X-radiograph (*) Images Chacophrys pierottii MZUSP 16274. Alsodes nodosus CM-HERPS-68395; Ceratophrys aurita MZUSP 31367; and Cas-herp-84998; C. calcarata MZUSP 99657; C. cornuta MZUSP 70548; uf:herp:63162; MCZ: Herp: Fossils A-17499; C. cranwelli MZUSP 99320; MCZ: Herp: A-35360. †Ceratophrys ameghinorum MACN 14317, 14318, 19731; Ceratophrys joazeirensis MZUSP 142284; C. ornata MZUSP †C. ornata MLP 86-viii-1-4; †C. prisca MACN 14323, 70791; C. stolzmanni USNM 160970; C. testudo NRM 1912*; Cha- †C. rusconii MACN 19744; †Ceratophrys sp. MLP 86-viii-1-5/6; cophrys pierottii KU191932, MZUSP 99329; Lepidobatrachus Ceratophrys sp.† MACN 14328; †Ceratophrys cornuta NHMUK asper MZUSP 94595; L. laevis MZUSP 94681; UF-H-12347; 18895/6. L. llanensis MZUSP 74347; thompsoni UF-H-39.