Expanding Nuclear Physics Horizons with the Gamma Factory

Total Page:16

File Type:pdf, Size:1020Kb

Expanding Nuclear Physics Horizons with the Gamma Factory Expanding Nuclear Physics Horizons with the Gamma Factory Dmitry Budker Johannes Gutenberg-Universit¨atMainz, 55128 Mainz, Germany Helmholtz-Institut, GSI Helmholtzzentrum f¨urSchwerionenforschung, 55128 Mainz, Germany and Department of Physics, University of California, Berkeley, California 94720, USA Julian C. Berengut School of Physics, University of New South Wales, Sydney 2052, Australia and Max-Planck-Institut f¨urKernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Victor V. Flambaum School of Physics, University of New South Wales, Sydney 2052, Australia Johannes Gutenberg-Universit¨atMainz, 55128 Mainz, Germany Helmholtz-Institut, GSI Helmholtzzentrum f¨urSchwerionenforschung, 55128 Mainz, Germany and The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand Mikhail Gorchtein Johannes Gutenberg-Universit¨atMainz, 55128 Mainz, Germany Junlan Jin Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China Felix Karbstein Helmholtz-Institut Jena, GSI Helmholtzzentrum f¨urSchwerionenforschung, 07743 Jena, Germany and Theoretisch-Physikalisches Institut, Abbe Center of Photonics, Friedrich-Schiller-Universit¨atJena, Max-Wien-Platz 1, 07743 Jena, Germany Mieczyslaw Witold Krasny LPNHE, Sorbonne Universit´e,CNRS/IN2P3, Paris; France and CERN, Geneva, Switzerland Yuri A. Litvinov GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany Adriana P´alffy Department of Physics, Friedrich-Alexander-Universit¨atErlangen-N¨urnberg, 91058 Erlangen, Germany Vladimir Pascalutsa and Marc Vanderhaeghen Institut f¨urKernphysik, Johannes Gutenberg-Universit¨atMainz, 55128 Mainz, Germany Alexey Petrenko Budker Institute of Nuclear Physics, Novosibirsk, Russia and Novosibirsk State University arXiv:2106.06584v1 [nucl-ex] 11 Jun 2021 Andrey Surzhykov Physikalisch{Technische Bundesanstalt, D{38116 Braunschweig, Germany Institut f¨urMathematische Physik, Technische Universit¨atBraunschweig, D{38106 Braunschweig, Germany and Laboratory for Emerging Nanometrology Braunschweig, D-38106 Braunschweig, Germany Peter G. Thirolf Fakult¨atf¨urPhysik, Ludwig-Maximilians-Universit¨atM¨unchen,85748 Garching, Germany Hans A. Weidenm¨uller Max-Planck-Institut f¨urKernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany Vladimir Zelevinsky Department of Physics and Astronomy and National Superconducting Cyclotron Laboratiory/Facility for Rare Isotope Beams, Michigan State University, 640 S. Shaw Lane, East Lansing, MI 48824, USA 2 (Dated: June 15, 2021) The Gamma Factory (GF) is an ambitious proposal, currently explored within the CERN Physics Beyond Colliders program, for a source of photons with energies up to ≈ 400 MeV and photon fluxes (up to ≈ 1017 photons per second) exceeding those of the currently available gamma sources by or- ders of magnitude. The high-energy (secondary) photons are produced via resonant scattering of the primary laser photons by highly relativistic partially-stripped ions circulating in the accelerator. The secondary photons are emitted in a narrow cone and the energy of the beam can be monochro- matized, eventually down to the ≈ 1 ppm level, via collimation, at the expense of the photon flux. This paper surveys the new opportunities that may be afforded by the GF in nuclear physics and related fields. CONTENTS 4.8.2. Neutron-skin measurements in coherent (γ; π0) reactions 26 1. Introduction3 4.8.3. Pion decay constant from the 1.1. The Gamma Factory3 Primakoff effect 27 1.2. The goals and main results of this paper5 4.9. Precision measurement of nuclear E1 polarizabilities 28 2. Nuclear spectroscopy in the ion beam5 4.10. Delta-resonance region and continuum 2.1. Low-energy nuclear transitions6 effects 28 2.2. The lowest-lying nuclear isomer 229mTh8 4.11. Parity-violation in photo-nuclear processes 29 2.3. Interaction of nuclear and atomic degrees of 5. Experimental considerations with fixed targets 31 freedom8 5.1. Thermal-load issues 31 2.4. Further experimental prospects involving 5.2. Parallel spectroscopy with spatially resolved nuclear transitions in the ion beam 10 detection 31 2.4.1. Spectroscopy of isomers 10 5.3. Gamma-ray/X-ray and 2.4.2. Laser cooling with nuclear gamma-ray/gamma-ray pump-probe transitions 10 spectroscopy 31 2.4.3. Production of higher-energy gamma 5.4. Highly monochromatic gamma beams 33 rays 11 6. Photophysics with a storage ring for 3. P - and CP -violating Compton scattering of radioisotopes 34 primary photons from stored ions 11 7. Colliding-beam opportunities 36 4. Nuclear physics with GF secondary-photon beam 7.1. Photoabsorption structure functions 37 on fixed targets 13 7.2. Production of ultrahigh-energy gamma 4.1. Narrow resonances 14 rays 38 4.2. Pygmy dipole resonances 15 7.2.1. Scattering of secondary photons off 4.3. GDR and multiphoton excitation 16 stored relativistic ions 38 4.4. Photonuclear response above particle 7.2.2. Scattering of secondary photons off threshold 17 a proton beam 38 4.4.1. Neutron-capture cross sections of s-process branching nuclei 18 8. Production of isotopes and isomers for medicine, 4.4.2. (γ,p), (γ; α) cross sections for dark matter search and gamma lasers 39 p-process nucleosynthesis 18 8.1. Production of medical isotopes via (γ; n) reactions 39 4.4.3. Direct measurement of astrophysical 0 S-factors 19 8.2. Production of nuclear isomers via (γ; γ ) 4.4.4. Alpha clustering in heavy nuclei 19 reactions 41 4.4.5. Fano effect in nuclear gamma 9. Induced gamma emission and gamma lasers 41 spectroscopy 20 4.5. Photofission with monochromatic gamma 10. Gamma polarimetry 44 beams 20 10.1. Polarimetry with narrow resonances 44 4.6. Odd harmonics in angular distribution of 10.2. Other polarimetric techniques 45 fission fragments 23 4.7. Photoinduced processes on the proton and 11. Quantum vacuum effects 45 light nuclei 24 11.1. Vacuum birefringence 46 4.8. Pion photoproduction 25 11.1.1. Quasi-constant magnetic field 46 4.8.1. Photoproduction of bound π− 25 11.1.2. High-intensity laser pulse 47 3 11.2. Photon Splitting 48 As a unique and unprecedented research tool, the GF 11.3. Photon Scattering 48 opens new possibilities across several fields of physics, from atomic physics (with the opportunities surveyed in 12. Nuclear physics with tertiary beams 49 [3]), to nuclear physics and related fields (the subject of 12.1. Tertiary beams at the GF 49 the present paper), to elementary-particle physics and 12.2. Polarized electron, positron and muon searches for physics beyond the standard model (SM). sources 49 While the GF today is still a proposal, some of its key 12.3. High-purity neutrino beams 50 components such as the production and storage of par- 12.4. Neutron and radioactive ion sources 50 tially stripped ions (PSI), for instance hydrogen- and 12.5. Production of monoenergetic fast neutrons 51 helium-like Pb and phosphorus-like Xe [4{6], have been 12.6. Metrology with keV neutrons 51 already demonstrated experimentally in the Super Pro- ton Synchrotron (SPS) and the Large Hadron Collider 13. Nuclear physics opportunities at the SPS 51 (LHC) at CERN. Moreover, the proof-of-principle exper- iment [7], further discussed in Sec. 13, will demonstrate 14. Speculative ideas and open questions 51 the full GF concept at SPS. The design of the experi- 14.1. Applying the Gamma Factory ideas at ments is complete, awaiting approval of the SPS Com- other facilities 51 mittee. 14.2. Nuclear waste transmutation 52 14.3. Laser polarization of PSI 52 1.1. The Gamma Factory 14.4. Quark-gluon plasma with polarized PSI 52 14.5. Ground-state hyperfine-structure transitions in PSI 52 The principle of the GF is illustrated in Fig.1. Highly 14.6. Detection of gravitational waves 53 charged partially-stripped ions circulate in a storage ring at ultrarelativistic speeds with a Lorentz factor γ = 2 −1=2 15. Conclusions and optimistic outlook 53 (1 − β ) , with β = v=c ≈ 1 being the ion speed normalized by the speed of light. The electrons bound Acknowledgments 53 to these ions interact with a (primary) laser beam and undergo transitions between the atomic shells. The res- Appendix 54 onance fluorescence photons, as seen in the laboratory frame, are emitted in a narrow cone with opening angle A. Survey of existing and forthcoming gamma of ≈ 1/γ, and form the secondary beam. The photon en- facilities 54 ergy is boosted by a factor of ≈ 4γ2 with respect to the original laser photons used for the electronic excitation. B. Gamma resonances in 13C 54 The anticipated secondary beam parameters are listed in 1. The 8.86 MeV M1 resonance 54 TableI. In many respects, the GF will be a qualitative 2. The 7.55 MeV E2 resonance 54 leap compared to the existing gamma sources, as well as 3. The 3.09 MeV E1 resonance 54 sources currently under construction. These are briefly discussed in AppendixA. C. Other reviews and nuclear databases 55 Successful excitation of an atomic shell relies on a res- onance condition involving both the relativistic factor γ References 55 of the PSI as well as the primary (optical) laser frequency !. Thus, the tunability of the secondary beam energy is achieved by simultaneously tuning γ and adjusting the 1. INTRODUCTION wavelength or the incident angle θl of the primary laser beam to maintain the resonance with an atomic transi- tion in the PSI ( !0): The Gamma Factory (GF) is a novel research tool pro- ~ 0 posed in Ref. [1] and subsequently developed at CERN ~! = ~!γ(1 + β cos θl): (1) as part of its Physics Beyond Colliders studies [2]. The main aim of the GF is the generation of high-intensity The ion beam energy variation is a routine procedure in gamma-ray beams of tunable energy and relatively small a storage ring. Indeed, at the LHC, the ions are injected energy spread. At the same time, the GF facility offers with an initial relativistic factor of around γ = 220, and unique scientific opportunities by far not limited to the are subsequently accelerated up to γ = 2900.
Recommended publications
  • Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs
    Guidance Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs GUIDANCE U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) December 2012 Clinical/Medical Guidance Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave. Silver Spring, MD 20993-0002 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) December 2012 Clinical/Medical Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION..............................................................................................................................................1 II. BACKGROUND ................................................................................................................................................1 A. PET DRUGS .....................................................................................................................................................1 B. IND..................................................................................................................................................................2
    [Show full text]
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • The R-Process Nucleosynthesis and Related Challenges
    EPJ Web of Conferences 165, 01025 (2017) DOI: 10.1051/epjconf/201716501025 NPA8 2017 The r-process nucleosynthesis and related challenges Stephane Goriely1,, Andreas Bauswein2, Hans-Thomas Janka3, Oliver Just4, and Else Pllumbi3 1Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium 2Heidelberger Institut fr¨ Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany 3Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 4Astrophysical Big Bang Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan Abstract. The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS) mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt) ejecta expelled during binary NS or NS-black hole (BH) mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A > 90 up to actinides. The corresponding abundance distribution is found to reproduce the∼ solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our under- standing of the composition of the ejected matter.
    [Show full text]
  • Chapter 3 the Fundamentals of Nuclear Physics Outline Natural
    Outline Chapter 3 The Fundamentals of Nuclear • Terms: activity, half life, average life • Nuclear disintegration schemes Physics • Parent-daughter relationships Radiation Dosimetry I • Activation of isotopes Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radther Natural radioactivity Activity • Activity – number of disintegrations per unit time; • Particles inside a nucleus are in constant motion; directly proportional to the number of atoms can escape if acquire enough energy present • Most lighter atoms with Z<82 (lead) have at least N Average one stable isotope t / ta A N N0e lifetime • All atoms with Z > 82 are radioactive and t disintegrate until a stable isotope is formed ta= 1.44 th • Artificial radioactivity: nucleus can be made A N e0.693t / th A 2t / th unstable upon bombardment with neutrons, high 0 0 Half-life energy protons, etc. • Units: Bq = 1/s, Ci=3.7x 1010 Bq Activity Activity Emitted radiation 1 Example 1 Example 1A • A prostate implant has a half-life of 17 days. • A prostate implant has a half-life of 17 days. If the What percent of the dose is delivered in the first initial dose rate is 10cGy/h, what is the total dose day? N N delivered? t /th t 2 or e Dtotal D0tavg N0 N0 A. 0.5 A. 9 0.693t 0.693t B. 2 t /th 1/17 t 2 2 0.96 B. 29 D D e th dt D h e th C. 4 total 0 0 0.693 0.693t /th 0.6931/17 C.
    [Show full text]
  • A New Gamma Camera for Positron Emission Tomography
    INIS-mf—11552 A new gamma camera for Positron Emission Tomography NL89C0813 P. SCHOTANUS A new gamma camera for Positron Emission Tomography A new gamma camera for Positron Emission Tomography PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE TECHNISCHE UNIVERSITEIT DELFT, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF.DRS. P.A. SCHENCK, IN HET OPENBAAR TE VERDEDIGEN TEN OVERSTAAN VAN EEN COMMISSIE, AANGEWEZEN DOOR HET COLLEGE VAN DECANEN, OP DINSDAG 20 SEPTEMBER 1988TE 16.00 UUR. DOOR PAUL SCHOTANUS '$ DOCTORANDUS IN DE NATUURKUNDE GEBOREN TE EINDHOVEN Dit proefschrift is goedgekeurd door de promotor Prof.dr. A.H. Wapstra s ••I Sommige boeken schijnen geschreven te zijn.niet opdat men er iets uit zou leren, maar opdat men weten zal, dat de schrijver iets geweten heeft. Goethe Contents page 1 Introduction 1 2 Nuclear diagnostics as a tool in medical science; principles and applications 2.1 The position of nuclear diagnostics in medical science 2 2.2 The detection of radiation in nuclear diagnostics: 5 standard techniques 2.3 Positron emission tomography 7 2.4 Positron emitting isotopes 9 2.5 Examples of radiodiagnostic studies with PET 11 2.6 Comparison of PET with other diagnostic techniques 12 3 Detectors for positron emission tomography 3.1 The absorption d 5H keV annihilation radiation in solids 15 3.2 Scintillators for the detection of annihilation radiation 21 3.3 The detection of scintillation light 23 3.4 Alternative ways to detect annihilation radiation 28 3-5 Determination of the point of annihilation: detector geometry,
    [Show full text]
  • Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2.
    [Show full text]
  • Electron Capture in Stars
    Electron capture in stars K Langanke1;2, G Mart´ınez-Pinedo1;2;3 and R.G.T. Zegers4;5;6 1GSI Helmholtzzentrum f¨urSchwerionenforschung, D-64291 Darmstadt, Germany 2Institut f¨urKernphysik (Theoriezentrum), Department of Physics, Technische Universit¨atDarmstadt, D-64298 Darmstadt, Germany 3Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨ur Schwerionenforschung, D-64291 Darmstadt, Germany 4 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA 5 Joint Institute for Nuclear Astrophysics: Center for the Evolution of the Elements, Michigan State University, East Lansing, Michigan 48824, USA 6 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA E-mail: [email protected], [email protected], [email protected] Abstract. Electron captures on nuclei play an essential role for the dynamics of several astrophysical objects, including core-collapse and thermonuclear supernovae, the crust of accreting neutron stars in binary systems and the final core evolution of intermediate mass stars. In these astrophysical objects, the capture occurs at finite temperatures and at densities at which the electrons form a degenerate relativistic electron gas. The capture rates can be derived in perturbation theory where allowed nuclear transitions (Gamow-Teller transitions) dominate, except at the higher temperatures achieved in core-collapse supernovae where also forbidden transitions contribute significantly to the rates. There has been decisive progress in recent years in measuring Gamow-Teller (GT) strength distributions using novel experimental techniques based on charge-exchange reactions. These measurements provide not only data for the GT distributions of ground states for many relevant nuclei, but also serve as valuable constraints for nuclear models which are needed to derive the capture rates for the arXiv:2009.01750v1 [nucl-th] 3 Sep 2020 many nuclei, for which no data exist yet.
    [Show full text]
  • 2.3 Neutrino-Less Double Electron Capture - Potential Tool to Determine the Majorana Neutrino Mass by Z.Sujkowski, S Wycech
    DEPARTMENT OF NUCLEAR SPECTROSCOPY AND TECHNIQUE 39 The above conservatively large systematic hypothesis. TIle quoted uncertainties will be soon uncertainty reflects the fact that we did not finish reduced as our analysis progresses. evaluating the corrections fully in the current analysis We are simultaneously recording a large set of at the time of this writing, a situation that will soon radiative decay events for the processes t e'v y change. This result is to be compared with 1he and pi-+eN v y. The former will be used to extract previous most accurate measurement of McFarlane the ratio FA/Fv of the axial and vector form factors, a et al. (Phys. Rev. D 1984): quantity of great and longstanding interest to low BR = (1.026 ± 0.039)'1 I 0 energy effective QCD theory. Both processes are as well as with the Standard Model (SM) furthermore very sensitive to non- (V-A) admixtures in prediction (Particle Data Group - PDG 2000): the electroweak lagLangian, and thus can reveal BR = (I 038 - 1.041 )*1 0-s (90%C.L.) information on physics beyond the SM. We are currently analyzing these data and expect results soon. (1.005 - 1.008)* 1W') - excl. rad. corr. Tale 1 We see that even working result strongly confirms Current P1IBETA event sxpelilnentstatistics, compared with the the validity of the radiative corrections. Another world data set. interesting comparison is with the prediction based on Decay PIBETA World data set the most accurate evaluation of the CKM matrix n >60k 1.77k element V d based on the CVC hypothesis and ihce >60 1.77_ _ _ results
    [Show full text]
  • Nuclear Engineering and Technology 49 (2017) 1489E1494
    Nuclear Engineering and Technology 49 (2017) 1489e1494 Contents lists available at ScienceDirect Nuclear Engineering and Technology journal homepage: www.elsevier.com/locate/net Original Article Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring * Romain Coulon , Jonathan Dumazert, Tola Tith, Emmanuel Rohee, Karim Boudergui CEA, LIST, F-91191 Gif-sur-Yvette Cedex, France article info abstract Article history: The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. Received 29 April 2016 To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and Received in revised form reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and 15 May 2017 efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, Accepted 4 June 2017 and LaBr :Ce. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and Available online 3 July 2017 3 reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environ- mental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe de- Keywords: Xenon tector was performed to minimize the detector capacitance and the required power supply. Simulations fi Spectrometry were done with the MCNPX2.7 particle transport code to estimate the intrinsic ef ciency of the HPXe Environmental detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide Detector perspective for further analysis. Radiation © 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the Ionization chamber CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Separation of Nuclear Isomers for Cancer Therapeutic Radionuclides
    www.nature.com/scientificreports OPEN Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after- Received: 03 November 2016 Accepted: 06 February 2017 effects Published: 13 March 2017 R. Bhardwaj1,2, A. van der Meer1, S. K. Das1, M. de Bruin1, J. Gascon2, H. T. Wolterbeek1, A. G. Denkova1 & P. Serra-Crespo1 177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β− emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of177 Lu based pharmaceuticals. Lutetium-177 (177Lu) has emerged as a promising radionuclide for targeted therapy. The low energy β− emissions, a half-life of 6.64 days and the emission of low energy and low abundance γ-rays has made 177Lu a solid candidate to be the most applied therapeutic radionuclide by 20201. Its low energy β − particles with a tissue penetration of less than 3 mm make it suitable for targeting small primary and metastatic tumours, like prostate, breast, mela- noma, lung and pancreatic tumours, for bone palliation therapy and other chronic diseases2–4.
    [Show full text]
  • Neutron Drip Line Nuclei HUGE D I F F U S E D PA IR ED
    Neutron Drip line nuclei HUGE D i f f u s e d PA IR ED 4He 5He 6He 7He 8He 9He 10He Pairing and binding The Grand Nuclear Landscape (finite nuclei + extended nucleonic matter) superheavy Z=118, A=294 nuclei known up to Z=91 82 126 terra incognita known nuclei protons proton drip line 50 82 neutron stars 28 20 50 stable nuclei neutron drip line 8 28 2 20 probably known only up to oxygen 2 8 neutrons Binding Blocks http://www.york.ac.uk/physics/public-and-schools/schools/secondary/binding-blocks/ http://www.york.ac.uk/physics/public-and-schools/schools/secondary/binding- blocks/interactive/ https://arxiv.org/abs/1610.02296 http://www.nishina.riken.jp/enjoy/kakuzu/kakuzu_web.pdf The limits: Skyrme-DFT Benchmark 2012 120 stable nuclei 288 known nuclei ~3,000 drip line two-proton drip line N=258 80 S2n = 2 MeV Z=82 SV-min two-neutron drip line N=184 Asymptotic freedom ? 110 Z=50 40 N=126 100 proton number Z=28 N=82 proton number Z=20 90 230 244 N=50 232 240 248 256 N=28 Nuclear Landscape 2012 neutron number 0 N=20 0 40 80 120 160 200 240 280 fromneutron B. Sherrill number How many protons and neutrons can be bound in a nucleus? Literature: 5,000-12,000 Erler et al. Skyrme-DFT: 6,900±500 Nature 486, 509 (2012) syst HW: a) Using http://www.nndc.bnl.gov/chart/ find one- and two-nucleon separation energies of 6He, 7He, 8He, 141Ho, and 132Sn.
    [Show full text]
  • Nuclear Equations
    Nuclear Equations In nuclear equations, we balance nucleons (protons and neutrons). The atomic number (number of protons) and the mass number (number of nucleons) are conserved during the reaction. Nuclear Equations Alpha Decay Nuclear Equations Beta Decay Nuclear Equations Beta Decay Nuclear Equations Positron Emission: A positron is a particle equal in mass to an electron but with opposite charge. Nuclear Equations Electron Capture: A nucleus absorbs an electron from the inner shell. Nuclear Equations EXAMPLE 4.1 Balancing Nuclear Equations Write balanced nuclear equations for each of the following processes. In each case, indicate what new element is formed. a. Plutonium-239 emits an alpha particle when it decays. b. Protactinium-234 undergoes beta decay. c. Carbon-11 emits a positron when it decays. d. Carbon-11 undergoes electron capture. EXAMPLE 4.1 Balancing Nuclear Equations continued Exercise 4.1 Write balanced nuclear equations for each of the following processes. In each case, indicate what new element is formed. a. Radium-226 decays by alpha emission. b. Sodium-24 undergoes beta decay. c. Gold-188 decays by positron emission. d. Argon-37 undergoes electron capture. EXAMPLE 4.2 More Nuclear Equations 5 In the upper atmosphere, a nitrogen-14 nucleus absorbs a neutron. A carbon-14 nucleus and another particle are formed. What is the other particle? Half-Life Half-life of a radioactive sample is the time required for ½ of the material to undergo radioactive decay. Half-Life Half-Life Fraction Remaining = 1/2n Half-life T1/2 = 0.693/ k(decay constant) If you know how much you started with and how much you ended with, then you can determine the number of half-lives.
    [Show full text]