Tvorí Miecha (Medulla Spinalis) a Mozog (Encephalon)

Total Page:16

File Type:pdf, Size:1020Kb

Tvorí Miecha (Medulla Spinalis) a Mozog (Encephalon) doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRÁLNY NERVOVÝ SYSTÉM – tvorí miecha (medulla spinalis) a mozog (encephalon) MEDULLA SPINALIS kraniálne hranice: foramen magnum, decussatio pyramidum, výstup 1. páru miechových nervov kaudálne hranice: úroveň stavcov L1 – L2 conus medullaris – filum terminale (S2) – cauda equina zhrubnutia: intumescencia cervicalis (C5 – Th1): vystupujú z nej nervy pre plexus brachialis intumescencia lumbosacralis (L1 – S2): vystupujú z nej nervy pre plexus lumbosacralis vonkajšia štruktúra: fissura mediana anterior sulcus anterolateralis – radices anteriores nn. spinalium sulcus posterolateralis – radices posteriores nn. spinalium sulcus medianus posterior sulcus intermedius posterior vnútorná štruktúra: Substantia alba funiculus anterior (medzi fissura mediana anterior a sulcus anterolateralis) funiculus lateralis (medzi sulcus anterolateralis a sulcus posterolateralis) funiculus posterior (medzi sulcus posterolateralis a sulcus medianus posterior) fasciculus gracilis fasciculus cuneatus Substantia grissea cornu anterius (ventralis) – motorická funkcia: Rexedova lamina I – VI cornu laterale – viscerálne funkcie: Rexedova lamina VII cornu posterius (dorsalis) – prijíma senzitívne informácie: Rexedova lamina VIII – IX substantia grissea centralis – interneuróny: okolo canalis centralis Rexedova lamina X Canalis centralis kraniálne prechod do IV. mozgovej komory kaudálne rozšírenie do ventriculus terminalis cievy miechy: Artérie: rr. spinales okolitých tepien – aa. radiculares anteriores et posteriores: aa. spinales posteriores (v sulci posterolaterales) – pre zadnú 1/3 miechy, najmä bielu hmotu a. spinalis anterior (vo fissura mediana anterior) – pre predné 2/3 miechy, najmä sivú hmotu Vény: plexus venosi vertebrales interni sa vlievajú do plexus venosi vertebrales externi obaly a priestory miechy: endorhachis – periost canalis vertebralis spatium epidurale: tukové tkanivo, plexus venosi vertebrales interni dura mater arachnoidea mater spatium subarachnoidale: liquor cerebrospinalis pia mater ENCEPHALON Rhombencephalon (kosohranový mozog) Myelencephalon (Medulla oblongata, predĺžená miecha) Metencephalon (zadný mozog) – Pons (most) + Cerebellum (mozoček) Mesencephalon (stredný mozog) Prosencephalon (predný mozog) Diencephalon (medzimozog) Telencephalon (koncový mozog) Truncus encephali (mozgový kmeň) Medulla oblongata (Bulbus medullae spinalis) Pons Mesencephalon TRUNCUS ENCEPHALI Medulla oblongata od decussatio pyramidum (miesto kríženia tractus corticospinales anteriores) po sulcus bulbopontinus (priečna ryha medzi medulla oblongata a pons) pozdĺžne členenie: – ventrálne: fissura mediana anterior foramen caecum pyramis: val podmienený priebehom tractus corticospinalis sulcus anterolateralis: miesto výstupu n. hypoglossus (HN XII) oliva sulcus posterolateralis: miesto výstupu n. glossopharyngeus (HN IX), n. vagus (HN X), n. accessorius (HN XI) pedunculi cerebellares inferiores: spájajú predĺženú miechu s mozočkom – dorzálne: sulcus medianus posterior fasciculus gracilis – tuberculum gracile sulcus intermedius fasciculus cuneatus – tuberculum cuneatum dolná časť fossae rhomboideae Pons kraniálne nadväzuje na predĺženú miechu štruktúry: – ventrálne: sulcus bulbopontinus: miesto výstupu n. abducens (HN VI) sulcus basilaris: brázda na ventrálnej ploche, prebieha v nej a. basilaris pedunculi cerebellares medii: spájajú most s mozočkom angulus pontocerebellaris (trigonum pontocerebellare): miesto výstupu n. facialis (HN VII), n. vestibulocochlearis ( HN VIII) linea trigeminofacialis: tvorí laterálnu hranicu mosta, medzi výstupmi n. trigeminus (HN V) a n. facialis (HN VII), oddeľuje most a mozoček – dorzálne: horná časť fossae rhomboideae Fossa rhomboidea zadná plocha predĺženej miechy a mosta, tvorí spodinu IV. mozgovej komory popis štruktúr: sulcus medianus fossae rhomboideae: spája canalis centralis s aqueductus cerebri eminentia medialis: laterálne od sulcus medianus sulcus limitans: laterálne od eminentia medialis, hranica medzi alárnou a bazálnou platničkou z vývojového obdobia pars superior – fovea superior, locus coeruleus, colliculus facialis (vyvýšenie podmienené ohybom vlákien n. facialis okolo jadra n. abducens) pars intermedia – striae medullares fossae rhomboideae, area vestibularis a tuberculum acusticum (laterálne od sulcus limitans) pars inferior – trigonum n. hypoglossi: po stranách sulcus medianus (jadro n. hypoglossus) trigonum n. vagi: laterálne od trigonum n. hypoglossi (uložené jadro n. vagus) area postrema: kaudálne od trigonum n. vagi fovea inferior: vo vrchole trigonum n. vagi Mesencephalon pozdĺž stredného mozgu prebieha aqueductus cerebri (spája III. a IV. mozgovú komoru) pedunculi cerebellares superiores: spájajú mesencephalon s mozočkom časti: pedunculus cerebri: – crus cerebri (basis pedunculi): fossa interpeduncularis, substantia perforata posterior výstup n. oculomotorius (HN III) – tegmentum: substantia nigra, nucleus ruber tectum mesencephali: posteriórne k aqueductus cerebri – colliculus superior – brachium colliculi superioris (súčasť zrakovej dráhy) – colliculus inferior – brachium colliculi inferioris (súčasť sluchovej dráhy) – výstup n. trochlearis (HN IV) CEREBELLUM vermis cerebelli: stredová nepárová časť mozočka hemispheriae cerebelli: mozočkové pologule lobus anterior lobus posterior lobus flocculonodularis vonkajšie členenie: folia cerebelli fissurae cerebelli: fissura prima: medzi lobus anterior a lobus posterior fissura posterolateralis: medzi lobus posterior a lobus flocculonodularis vnútorná štruktúra: cortex cerebelli: kôra, sivá hmota arbor vitae: biela hmota nuclei cerebelli: sivá hmota nuclei fastigii nucleus emboliformis nuclei globosi nucleus dentatus pedunculi cerebellares superiores: spojenie so stredným mozgom pedunculi cerebellares medii: spojenie s mostom pedunculi cerebellares inferiores: spojenie s predĺženou miechou anatomické delenie mozočka: vermis cerebelli hemispheriae cerebelli lingula vinculum lingulae lobulus centralis ala lobuli centralis culmen lobulus quadrangularis fissura prima declive lobulus simplex folium lobulus semilunaris superior fissura horizontalis tuber lobulus semilunaris inferior pyramis lobulus biventer uvula tonsilla cerebelli fissura posterolateralis nodulus flocculus DIENCEPHALON uložený nad a pred stredným mozgom sulcus hypothalamicus: hranica medzi senzitívnymi a motorickými časťami medzimozgu Hypothalamus uložený pod sulcus hypothalamicus, primárne centrum ANS štruktúry: corpus mammillare tuber cinereum infundibulum – hypophysis chiasma opticum – tractus opticus Thalamus (thalamus dorsalis) – senzitívny nad sulcus hypothalamicus, najväčšia časť medzimozgu 'brána vedomia', prijíma všetky senzitívne informácie (okrem čuchových) štruktúry: Facies medialis thalami – adhaesio interthalamica stria medullaris thalami – tenia thalami Facies posterior (dorsalis) sulcus terminalis – v. thalamostriata superior, stria terminalis tenia choroidea – plexus choroideus ventriculi lateralis lamina affixa tuberculum anterius thalami pulvinar thalami Metathalamus: corpus geniculatum mediale – podkôrové centrum sluchu corpus geniculatum laterale – podkôrové centrum zraku Epithalamus dorzomediálne od thalamus, spojený s limbickým systémom štruktúry: habenula – trigonum habenulae commissura habenularum – epiphysis (corpus pineale) commissura posterior TELENCEPHALON hemispheriae cerebri: cortex cerebri – sivá hmota corpus medullare – biela hmota bazálne gangliá – sivá hmota čuchový a limbický systém Facies: superolateralis, medialis et inferior Margo: superior, medialis, inferior Lobus: frontalis, parietalis, occipitalis, temporalis a lobus insulae Polus: frontalis, occipitalis et temporalis Cortex cerebri – gyrifikácia Facies superolateralis cerebri sulcus lateralis – ramus anterior, ascendens et posterior sulcus centralis Lobus frontalis gyrus praecentralis sulcus praecentralis gyrus frontalis superior sulcus frontalis superior gyrus frontalis medius sulcus frontalis inferior gyrus frontalis inferior – pars orbitalis ramus anterior sulci lateralis – pars triangularis ramus ascendens sulci lateralis – pars opercularis ramus posterior sulci lateralis Lobus parietalis gyrus postcentralis sulcus postcentralis lobulus parietalis superior sulcus intraparietalis lobulus parietalis inferior – gyrus supramarginalis: obtáča koniec sulcus lateralis – gyrus angularis: obtáča koniec sulcus temporalis superior Lobus occipitalis gyri occipitales sulcus occipitalis transversus sulcus lunatus incisura praeoccipitalis Lobus temporalis gyrus temporalis superior – gyri temporales transversi sulcus temporalis superior gyrus temporalis medius sulcus temporalis inferior gyrus temporalis inferior Insula limen insulae sulcus circularis insulae gyrus longus insulae – sulcus centralis insulae gyri breves insulae Facies medialis cerebri gyrus frontalis medialis lobulus paracentralis praecuneus sulcus parietooccipitalis cuneus – sulcus calcarinus sulcus cinguli gyrus cinguli – isthmus gyri cinguli sulcus corporis callosi corpus callosum – rostrum, genu, truncus, splenium septum pellucidum – laminae et cavum septi pellucidi fornix – columna, corpus et crus fornicis gyrus paraterminalis area subcallosa Facies inferior cerebri gyrus rectus sulcus olfactorius bulbus olfactorius – tractus olfactorius – stria olfactoria medialis et lateralis trigonum olfactorium – substantia perforata anterior
Recommended publications
  • A VOLUMETRIC STUDY of HIPPOCAMPUS in CADAVERIC HUMAN BRAINS Maitreyee M.Kulkarni 1, Jagdish S.Soni *2, Shital Bhishma Hathila 3
    International Journal of Anatomy and Research, Int J Anat Res 2019, Vol 7(4.1):7003-06. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2019.285 A VOLUMETRIC STUDY OF HIPPOCAMPUS IN CADAVERIC HUMAN BRAINS Maitreyee M.Kulkarni 1, Jagdish S.Soni *2, Shital Bhishma Hathila 3. 1 Maitreyee M Kulkarni M.Sc Medical Anatomy, Medical College Baroda, Gujarat, India. *2 Dr.Jagdish S.Soni, M.S.Anatomy, Associate Professor, Anatomy Department, Medical College, Baroda, Gujarat, India. 3 Assistant Professor, Anatomy Department, Medical College, Baroda, Gujarat, India. ABSTRACT Background: Hippocampus is one of the key parts of limbic system. It is located in the floor of the inferior horn of lateral ventricle. Materials and methods: The study is conducted on 50 Hippocampi removed from 25 cadaveric brains in Medical College Baroda, Gujarat. The volume of each is measured by water displacement method. Results: It is observed that the mean volume for the sample is 2.26+0.88cc. The mean volume on right side is 2.37+0.88cc and on the left side is 2.12+0.88cc. The mean volumes seen in male and female hippocampi are 2.14+0.70cc and 2.52+1.21cc respectively. The mean volume in the age group 60-80 years is 2.55+0.65cc and in the age group 81 years onwards, it is 2.0+1.03cc. The difference in volumes of the two age groups is found to be statistically significant. Conclusion: The study will be useful to anatomists, Neurologists, Neurosurgeons and psychiatrists alike.
    [Show full text]
  • Anatomy of the Temporal Lobe
    Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation.
    [Show full text]
  • Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
    Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925).
    [Show full text]
  • Connection Interfaces Between Neuronal Elements and Structures Inside Greater Limbic System
    Rom J Leg Med [21] 137-148 [2013] DOI: 10.4323/rjlm.2013.137 © 2013 Romanian Society of Legal Medicine Connection interfaces between neuronal elements and structures inside greater limbic system. Evaluation in forensic psycho-affective pathology Gheorghe S. Dragoi1, Petru Razvan Melinte2, Liviu Radu3 _________________________________________________________________________________________ Abstract: The authors achieved a macroanatomic analysis on the location and relations of neuronal structures and elements inside transitional mesocortex and archicortex in order to visualize the connection interfaces of greater limbic system. The analysis was performed on human encephalon using subsystems generally homologated by neuroanatomists: lobus limbicus, hippocampal formation, prefrontal cortex, lobus insularis and subcortical structures. Equally, they performed a research of the literature on the implication of connection interfaces from paralimbic, limbic and archicortex areas, into forensic psycho-affective ortology and pathology. The study draws the attention to time and space development of terminology and homologation of some new concepts bound to multifunctional subsystems such as: medial temporal lobe memory system, prefrontal cortex and limbic midbrain area. Key Words: greater limbic system, transitional mesocortex, archicortex euroanatomy registered remarkable progress (proneocortical or paralimbic zone and periarchicortical or by the diversity of morph-functional and limbic zone); hippocampal formation (with two regions: N anatomic-clinical
    [Show full text]
  • The Evolutionary Development of the Brain As It Pertains to Neurosurgery
    Open Access Original Article DOI: 10.7759/cureus.6748 The Evolutionary Development of the Brain As It Pertains to Neurosurgery Jaafar Basma 1 , Natalie Guley 2 , L. Madison Michael II 3 , Kenan Arnautovic 3 , Frederick Boop 3 , Jeff Sorenson 3 1. Neurological Surgery, University of Tennessee Health Science Center, Memphis, USA 2. Neurological Surgery, University of Arkansas for Medical Sciences, Little Rock, USA 3. Neurological Surgery, Semmes-Murphey Clinic, Memphis, USA Corresponding author: Jaafar Basma, [email protected] Abstract Background Neuroanatomists have long been fascinated by the complex topographic organization of the cerebrum. We examined historical and modern phylogenetic theories pertaining to microneurosurgical anatomy and intrinsic brain tumor development. Methods Literature and history related to the study of anatomy, evolution, and tumor predilection of the limbic and paralimbic regions were reviewed. We used vertebrate histological cross-sections, photographs from Albert Rhoton Jr.’s dissections, and original drawings to demonstrate the utility of evolutionary temporal causality in understanding anatomy. Results Phylogenetic neuroanatomy progressed from the substantial works of Alcmaeon, Herophilus, Galen, Vesalius, von Baer, Darwin, Felsenstein, Klingler, MacLean, and many others. We identified two major modern evolutionary theories: “triune brain” and topological phylogenetics. While the concept of “triune brain” is speculative and highly debated, it remains the most popular in the current neurosurgical literature. Phylogenetics inspired by mathematical topology utilizes computational, statistical, and embryological data to analyze the temporal transformations leading to three-dimensional topographic anatomy. These transformations have shaped well-defined surgical planes, which can be exploited by the neurosurgeon to access deep cerebral targets. The microsurgical anatomy of the cerebrum and the limbic system is redescribed by incorporating the dimension of temporal causality.
    [Show full text]
  • Ammon's Horn Sclerosis : Its Pathogenesis and Clinical Significance
    Tohoku J. Exp. Med., 1990, 161, Suppl., 273-295 Ammon's Horn Sclerosis : Its Pathogenesis and Clinical Significance KEIJI SANOand TAKAAKIKIRINO Department of Neurosurgery, Teikyo University, Tokyo 173 SANO, K. and KIRINO, T. Ammon's Horn Sclerosis : Its Pathogenesis and Clinical Significance. Tohoku J. Exp. Med., 1990, 161, Suppl., 273-295•\ Sclerosis of the cornu Ammonis or Ammon's horn sclerosis (AHS) is an "often- described, yet hitherto enigmatic phenomen" as Spielmyer put it in 1927. It has been found in cases with ischemia, anoxia or hypoglycemia and in more than half of the epileptic brains examined at autopsy. Various theories about its path- ogenesis have been propunded. Among them, the "Pathoklise" theory of the Vogts and the vascular theory of Spielmeyer and his associates were prevailing until recently. In 1953, two articles were published to contribute to the path- ogenesis of ictal automatism (a type of complex partial or temporal lobe seizures). One is the incisural sclerosis theory by Penfield and his associates and the other is the Ammon's horn sclerosis theory by Sano and Malamud. The former authors described a diffuse sclerosis of the infero-mesial temporal structures without, however, specifically relating it to AHS. They considered it was the result of localized anoxia of that portion of the brain caused by incisural herniation occurring during parturition. Sano and Malamud maintained that AHS is a result of convulsions, a distinct scar adjacent to which epileptogenic foci may develop in the course of time to cause ictal antomatism. The latter theory was corroborated by Sano, Falconer and others.
    [Show full text]
  • History, Anatomical Nomenclature, Comparative Anatomy and Functions of the Hippocampal Formation
    Bratisl Lek Listy 2006; 107 (4): 103106 103 TOPICAL REVIEW History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation El Falougy H, Benuska J Institute of Anatomy, Faculty of Medicine, Comenius University, Bratislava, [email protected] Abstract The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physi- ological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learning and memory. Another important functions of the hippocampus as a part of the limbic system is its role in regulation of sexual and emotional behaviour. The term hippocampal formation is defined as the complex of six structures: gyrus dentatus, hippocampus proprius, subiculum proprium, presubiculum, parasubiculum and area entorhinalis In this work we attempt to present a brief review of knowledge about the hippocampus from the point of view of history, anatomical nomenclature, comparative anatomy and functions (Tab. 1, Fig. 2, Ref.
    [Show full text]
  • Infections in Horses Part 2. Histopathological Findings in the Nervous System and Other Organs of Treated and Untreated Horses Reacting to Nagana
    Onderstepoort]. vet. Res. 38 (3), 141-176 (1971) CLINICOPATHOLOGICAL STUDY ON EXPERIMENTAL TRYPANOSOMA BRUCE! INFECTIONS IN HORSES PART 2. HISTOPATHOLOGICAL FINDINGS IN THE NERVOUS SYSTEM AND OTHER ORGANS OF TREATED AND UNTREATED HORSES REACTING TO NAGANA R. M. McCULLY1 and W. 0. NEITZ2 ABSTRACT McCULLY, R. M. & NEITZ, W. 0., 1971. Clinicopathological study on experimentally produced Trypanosoma brucei infection in horses. Part 2. Histopathological findings in the nervous system and other organs of treated and untreated horses reacting to nagana. Onderstepoort ]. vet. R es. 38 (3), 141-176 (1971). A detailed description of the histopathology of the nervous system and a brief account of lesions in visceral and other organs of six horses experimentally infected with Trypanosoma brucei Plimmer & Brad­ ford, 1899 is given. Attempts to produce a chronic form of nagana in three horses by subcurative medications with Antrypol and Berenil were successful. The chronicity period was extended to 130 days in one and to approximately 9 months in the other two horses. The data on the histological findings on the three horses are listed in tabular form. The lesions in the central nervous system were characterized by a severe pleocytosis of the meninges, an extensive subpial gliosis corresponding in severity to the involvement of the overlying leptomeninges, segmental demyelination of optic tracts and some other areas of white matter as well as grey matter and extensive perivascular cuffing with lymphocytes, plasmocytes, large mononuclear and Mott cells in this order of descending frequency. Comparison between lesions of the acute form of human sleeping sickness and those of the experi­ mentally produced chronic form of equine nagana revealed that points of similarity are far greater than those of dissimilarity.
    [Show full text]
  • Teaching Neuroanatomical Terminology in English As Part of the Language of Medicine
    JAHR Vol. 4 No. 7 2013 Review article Vanya Goranova*, Violeta Tacheva** Teaching neuroanatomical terminology in English as part of the language of medicine ABSTRACT Neuroanatomy is the study of the structural organization of the nervous system. Its terminol- ogy is closely related to the origin and development of medical terminology. Understanding linguistic phenomena such as etymology, synonyms, antonyms, paronyms, acronyms etc. helps the students in achieving a higher medical competence. The specific terms could be distributed into several categories related to: 1. geometric objects (pyramid, uncus, fornix); 2. colours (red nucleus, white matter, gray matter); 3. skull structures (lacrimal nerve – lacrimal bone, mandibular nerve – mandible); 4. author name (Schwann cells, Broca area, Parkinson disease). Some terms in the English terminology preserve their original Latin form (substantia nigra, corpus callosum) but others are modified (red nucleus, Latin - nucleus ruber). This model of investigation may be applied to other medical disciplines. Key words: Neuroanatomical Terminology, Etymology, Synonyms, Antonyms, Paronyms, Eponyms, Mythonyms, Toponyms, Acronyms, Backronyms Introduction Human anatomy is the science of the human body’s structure. It is a basic biomedi- cal morphological science which has arisen and developped closely to medicine - a science and art for diagnosis, treatment and prophylaxis of diseases. There are differ- ent anatomical disciplines (gross anatomy, cytology, histology, embryology), various * Correspondence address: Vanya Goranova, Department of Anatomy, Histology and Embryology; 2 Medical University, 55 Marin Drinov Str., 9002 Varna, Bulgaria, e-mail: [email protected] ** Correspondence address: Violeta Tacheva, Department of Foreign Languages, Communication and Sport, Medical University, 55 Marin Drinov Str., 9002 Varna, Bulgaria, e-mail: [email protected] 367 JAHR Vol.
    [Show full text]
  • Review Article Anatomy of the Temporal Lobe
    Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/113728 Please be advised that this information was generated on 2021-10-11 and may be subject to change. THE HIPPOCAMPAL FORMATION IN NORMAL AGING AND ALZHEIMER'S DISEASE A MORPHOMETRIC STUDY HARKE DE VRIES THE HXX'X'OCÄJVLE'AX. FOFtlVITVrX CMST I IST JsiORjyrzvx. ÍVGXISÍ<3 ÎVISTD г х^ZH:E:xiynE:R » s XiXSEASE г^. ІУІОЬІ^НОІУЕЕТІІХС; STXXDY THE HIPPOCAMPAL FORMATION IN NORMAL· AGING AND ALZHEIMER'S DISEASE A MORPHOMETRIC STUDY een wetenschappelijke proeve op het gebied van de geneeskunde en tandheeIkunde Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit te Nijmegen volgens besluit van het college van decanen in het openbaar te verdedigen op woensdag 21 februari 1990 des namiddags te 1.30 uur precies door geboren op 27 augustu199s 0195 7 te Badhocvedorp Drukkerij Leijn te Nijmegen Promotores: Prof. dr. R. Nieuwenhuys Prof. dr. G.J. ZwaniJOcen Co-promotor: Dr. J. Meek ...In the beginner's mind there is no thought "I have attained something"... (Shunryu Suzuki, in: Zen Mind, Beginner's Mind) Dedicated to my mother, In memory of my father. ISBN 90-9003283-5 CONTENTS CHAPTER 1 GENERAL INTRODUCTION 2 1.1 Epidemiology of Alzheimer's disease 3 1.2 Diagnosis of Alzheimer's disease 4 1.3 Hypotheses on the etiology of Alzheimer's disease....4 1.4 Infectious agents 5 1. 5 Neurotoxic agents 6 1.6 Dysfunction of the blood-brain barrier 6 1.7 Neurotransmitter and receptor deficiencies, neurotransmitter cytotoxicity 7 1.
    [Show full text]
  • 3-Tesla Magnetic Resonance Imaging of the Equine Brain in Healthy Horses – Potentials and Limitations
    657-670_Stuckenschneider.qxp_Musterseite Artikel.qxd 23.10.14 12:39 Seite 657 3-Tesla magnetic resonance imaging of the equine brain K. Stuckenschneider et al . Pferdeheilkunde 30 (2014) 5 (September/Oktober) 657-670 3-Tesla magnetic resonance imaging of the equine brain in healthy horses – Potentials and limitations Kathrin Stuckenschneider 1, Maren Hellige 1, Karsten Feige 1 and Hagen Gasse 2 1 Klinik für Pferde der Stiftung Tierärztliche Hochschule Hannover 2 Anatomisches Institut der Stiftung Tierärztliche Hochschule Hannover Summary : For evaluating neurological diseases, magnetic resonance imaging (MRI) has been widely recommended as the method of cho - ice in human medicine. It has been proposed as a valuable tool in clinical diagnostics and research projects in veterinary medicine as well. The aim of this study was to elaborate optimal settings appropriate for an examination of the equine brain in a 3-Tesla tomograph within an adequate examination time and with related optimal image quality. A key issue was the evaluation of those neuro-anatomical structures (formations of Grey and White Matter included) which were always clearly recognisable and, as such, were useful orientation landmarks. Furthermore, the average sizes of selected structures were measured in the magnetic resonance images in transversal views. MRI of 11 healthy horses was performed in general anaesthesia. After the examination the horses were euthanised, their heads were fixated by per - fusion, the brain was removed and cut either in transversal, dorsal or sagittal slices (approximately 4 mm thick). Photographic images of these slices corresponded to the magnetic resonance images in the equivalent planes. In the anatomical slices, all visible neurological struc - tures (gyri, nuclei, and formations of White Matter) were identified.
    [Show full text]