The Cognitive Neuroscience of Visual Attention Marlene Behrmann* and Craig Haimson†
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neural Measures of Visual Attention and Suppression As Biomarkers for ADHD- Associated Inattention
Neural Measures of Visual Attention and Suppression as Biomarkers for ADHD- associated Inattention Rebecca Elizabeth Townley PhD University of York Psychology August 2019 Abstract Abstract Whilst there is a wealth of literature examining neural differences in those with ADHD, few have investigated visual-associated regions. Given extensive evidence demonstrating visual-attention deficits in ADHD, it is possible that inattention problems may be associated with functional abnormalities within the visual system. By measuring neural responses across the visual system during visual-attentional tasks, we aim to explore the relationship between visual processing and ADHD-associated Inattention in the typically developed population. We first explored whether differences in neural responses occurred within the superior colliculus (SC); an area linked to distractibility and attention. Here we found that Inattention traits positively correlated with SC activity, but only when distractors were presented in the right visual field (RVF) and not the left visual field (LVF). Our later work followed up on these findings to investigate separate responses towards task-relevant targets and irrelevant, peripheral distractors. Findings showed that those with High Inattention exhibited increased responses towards distractors compared to targets, while those with Low Inattention showed the opposite effect. Hemifield differences were also observed where those with High Inattention showed increased RVF distractor-related signals compared to those with Low Inattention. No differences were observed for the LVF. Finally, we examined attention and suppression-related neural responses. Our results indicated that, while attentional responses were similar between Inattention groups, those with High Inattention showed weaker suppression responses towards the unattended RVF. No differences were found when suppressing the LVF. -
Levitis Et Al 2009
Animal Behaviour 78 (2009) 103–110 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/yanbe Behavioural biologists do not agree on what constitutes behaviour Daniel A. Levitis*, William Z. Lidicker, Jr, Glenn Freund Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley article info Behavioural biology is a major discipline within biology, centred on the key concept of ‘behaviour’. But Article history: how is ‘behaviour’ defined, and how should it be defined? We outline what characteristics we believe Received 10 February 2009 a scientific definition should have, and why we think it is important that a definition have these traits. Initial acceptance 12 March 2009 We then examine the range of available published definitions for behaviour. Finding no consensus, we Final acceptance 23 March 2009 present survey responses from 174 members of three behaviour-focused scientific societies as to their Published online 3 June 2009 understanding of the term. Here again, we find surprisingly widespread disagreement as to what MS. number: AE-09-00083 qualifies as behaviour. Respondents contradict themselves, each other and published definitions, indi- cating that they are using individually variable intuitive, rather than codified, meanings of ‘behaviour’. Keywords: We offer a new definition, based largely on survey responses: behaviour is the internally coordinated behaviour responses (actions or inactions) of whole living organisms (individuals or groups) to internal and/or definition external stimuli, excluding responses more easily understood as developmental changes. Finally, we level of organization philosophy of science discuss the usage, meanings and limitations of this definition. Ó 2009 The Association for the Study of Animal Behaviour. -
The Neurophysiology of Backward Visual Masking: Information Analysis
The Neurophysiology of Backward Visual Masking: Information Analysis Edmund T. Rolls, Martin J. Tovée, and Stefano Panzeri University of Oxford Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/11/3/300/1758552/089892999563409.pdf by guest on 18 May 2021 Abstract ■ Backward masking can potentially provide evidence of the to the stimulus. The decrease is more marked than the decrease time needed for visual processing, a fundamental constraint in ªring rate because it is the selective part of the ªring that that must be incorporated into computational models of vision. is especially attenuated by the mask, not the spontaneous Although backward masking has been extensively used psycho- ªring, and also because the neuronal response is more variable physically, there is little direct evidence for the effects of visual at short SOAs. However, even at the shortest SOA of 20 msec, masking on neuronal responses. To investigate the effects of a the information available is on average 0.1 bits. This compares backward masking paradigm on the responses of neurons in to 0.3 bits with only the 16-msec target stimulus shown and a the temporal visual cortex, we have shown that the response typical value for such neurons of 0.4 to 0.5 bits with a 500- of the neurons is interrupted by the mask. Under conditions msec stimulus. The results thus show that considerable infor- when humans can just identify the stimulus, with stimulus mation is available from neuronal responses even under onset asynchronies (SOA) of 20 msec, neurons in macaques backward masking conditions that allow the neurons to have respond to their best stimulus for approximately 30 msec. -
Hand on a Hot Stove
Hand on a Hot Stove Introduction: When You Put Your Hand on a Hot Stove Think about what happens if you accidentally place your hand on a hot stove. Use numbers 1-5 to place these statements in the order in which they happen. ____ You wave or shake your hand voluntarily to cool it. ____ Your arm moves to automatically move your hand away from the stove. ____ You feel pain in your hand. ____ You remember that you should not touch a hot stove. ____ You touch a hot stove. Life Sciences Learning Center 1 Copyright © 2013 by University of Rochester. All rights reserved. May be copied for classroom use Part 1: What is a reflex? Reflexes If you touch something that is very hot, your hand moves away quickly before you even feel the pain. You don’t have to think about it because the response is a reflex that does not involve the brain. A reflex is a rapid, unlearned, involuntary (automatic) response to a stimulus (change in the environment). Reflexes are responses that protect the body from potentially harmful events that require immediate action. They involve relatively few neurons (nerve cells) so that they can occur rapidly. There are a wide variety of reflexes that we experience every day such as sneezing, coughing, and blinking. We also automatically duck when an object is thrown at us, and our pupils automatically change size in response to light. These reflexes have evolved because they protect the body from potentially harmful events. Most reflexes protect people from injury or deal with things that require immediate action. -
Responses to Conflicting Stimuli in a Simple Stimulus–Response Pathway
2398 • The Journal of Neuroscience, February 11, 2015 • 35(6):2398–2406 Systems/Circuits Responses to Conflicting Stimuli in a Simple Stimulus–Response Pathway Pieter Laurens Baljon1 and XDaniel A. Wagenaar1,2 1California Institute of Technology, Division of Biology, Pasadena, California 91125, and 2University of Cincinnati, Department of Biological Sciences, Cincinnati, Ohio 45221 The “local bend response” of the medicinal leech (Hirudo verbana) is a stimulus–response pathway that enables the animal to bend away from a pressure stimulus applied anywhere along its body. The neuronal circuitry that supports this behavior has been well described, and its responses to individual stimuli are understood in quantitative detail. We probed the local bend system with pairs of electrical stimuli to sensory neurons that could not logically be interpreted as a single touch to the body wall and used multiple suction electrodes to record simultaneously the responses in large numbers of motor neurons. In all cases, responses lasted much longer than the stimuli that triggered them, implying the presence of some form of positive feedback loop to sustain the response. When stimuli were delivered simultaneously, the resulting motor neuron output could be described as an evenly weighted linear combination of the responses to the constituent stimuli. However, when stimuli were delivered sequentially, the second stimulus had greater impact on the motor neuron output, implying that the positive feedback in the system is not strong enough to render it immune to further input. Key words: invertebrate; neuronal circuits; sensory conflict; stimulus–response pathways Introduction Fortunately, lower animals also encounter sensory conflicts Sensory systems have traditionally been studied by neuroscien- and thus offer opportunities for studying circuits involved in tists one modality and one stimulus at a time. -
Appendix A: Glossary for Section 2.1 (PDF)
APPENDIX A GLOSSARY FOR SECTION 2.1 Sources: The Concise Columbia Encyclopedia. 1995. Columbia University Press; Solomon et al. 1993. Biology, Third Edition. Harcourt Brace Publishing astrocyte - a star-shaped cell, especially a neuroglial cell of nervous tissue. axon - the long, tubular extension of the neuron that conducts nerve impulses away from the cell body. blood-brain barrier - system of capillaries that regulates the movement of chemical substances, ions, and fluids in and out of the brain. central nervous system - the portion of the vertebrate nervous system consisting of the brain and spinal cord. cerebellum - the trilobed structure of the brain, lying posterior to the pons and medulla oblongata and inferior to the occipital lobes of the cerebral hemispheres, that is responsible for the regulation and coordination of complex voluntary muscular movement as well as the maintenance of posture and balance. cerebral cortex - the extensive outer layer of gray matter of the cerebral hemispheres, largely responsible for higher brain functions, including sensation, voluntary muscle movement, thought, reasoning, and memory. cerebrum - the large, rounded structure of the brain occupying most of the cranial cavity, divided into two cerebral hemispheres that are joined at the bottom by the corpus callosum. It controls and integrates motor, sensory, and higher mental functions, such as thought, reason, emotion, and memory. cognitive development - various mental tasks and processes (e.g. receiving, processing, storing, and retrieving information) that mediate between stimulus and response and determine problem-solving ability. demyelination - to destroy or remove the myelin sheath of (a nerve fiber), as through disease. dendrite - a branched protoplasmic extension of a nerve cell that conducts impulses from adjacent cells inward toward the cell body. -
Visual Consciousness in Health and Disease Andrew R
Neurol Clin N Am 21 (2003) 647–686 Visual consciousness in health and disease Andrew R. Whatham, PhD*, Patrik Vuilleumier, MD, Theodor Landis, MD, Avinoam B. Safran, MD Department of Clinical Neurosciences and Dermatology, Geneva University Hospitals, Geneva, Switzerland Conscious experience is an essential part of normal human life and interaction with the environment. Yet the nature of consciousness and conscious perception remains a mystery. Because of its subjective nature, consciousness has been difficult to investigate scientifically, but clues have been gained through studies involving patients with cortical lesions. Since the beginning of the 1990s, the development of event-related fMRI has provided insights into aspects of conscious perception in control subjects and patients with cortical lesions by correlating awareness and performance with neural activity during visual tasks. This article reviews how recent research has advanced understanding of conscious perception, its relation- ship to neural activity and visual performance, and how this relationship can be altered by visual dysfunction. It also presents what recent research indicates about how conscious awareness of vision might be represented at a neural level in the central nervous system. Concepts of conscious visual perception The neural pathways concerned with processing visual information from an external stimulus begin in the retina and carry neurally encoded visual information to a widespread cortical network. More than 30 cortical areas in the primate brain contain neurons responsive to visual information [1], each of these areas selectively engaged by distinct aspects of visual information (eg, edges, shapes, or color). Ventral pathways in temporal cortex encode complex attributes mediating object recognition, whereas * Corresponding author: Neuro-ophthalmology Unit, Ophthalmology Clinic, Department of Clinical Neurosciences and Dermatology, Geneva University Hospitals, Rue Micheli-du- Crest, 1211 Geneva, 14 Switzerland. -
CURRICULUM VITAE JODY CULHAM Brain and Mind Institute Western Interdisciplinary Research Building 4118 Western University London, Ontario Canada N6A 5B7
November 11, 2020 CURRICULUM VITAE JODY CULHAM Brain and Mind Institute Western Interdisciplinary Research Building 4118 Western University London, Ontario Canada N6A 5B7 Office: 1-(519)-661-3979 E-mail: [email protected] World Wide Web: http://www.culhamlab.com/ Citizenship: Canadian ACADEMIC CAREER Department of Psychology Western University (formerly University of Western Ontario) Professor, July 2013 – present Visiting Professor and Academic Nomad (Sabbatical): Centre for Mind/Brain Sciences, University of Trento, Italy (September 2015-February 2016); Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy (March-April 2016); Centre for Functional MRI of the Brain (FMRIB), Oxford University, UK (May 2016); University of Coimbra, Portugal (June 2016); Philipps University Marburg and Justus Liebig University Giessen (July 2016), Tokyo Institute of Technology (August 2016). Associate Professor, July 2007 – June 2013 Visiting Associate Professor (Sabbatical), Department of Cognitive Neuroscience, University of Maastricht, Netherlands (September-December 2008) and Department of Physiology and Residence of Higher Studies, University of Bologna, Italy (January-May 2009) Assistant Professor, July 2001 – June 2007 Affiliations: Brain and Mind Institute; Graduate Program in Neuroscience; Canadian Action and Perception Network Awards: Natural Sciences and Engineering Research Council (Canada) E. W. R. Steacie Memorial Fellowship, June 2010 Senior Fellowship, University of Bologna, January-March 2009 Western Faculty Scholar Award, March 2008 Western Faculty of Medicine Dean’s Award for Excellence in Research in the Team category, CIHR Group on Action and Perception, 2007 Canadian Institutes of Health Research New Investigator Award, 2003 Ontario Premier’s Research Excellence Award, 2003 McDonnell-Pew Postdoctoral Fellow Western University May 1997 - June 2001 Advisor: Dr. -
Carnegie Mellon - University of Pittsburgh Joint Summer Undergraduate Program in Computational Neuroscience
Carnegie Mellon - University of Pittsburgh Joint Summer Undergraduate Program in Computational Neuroscience Undergraduates interested in receiving research training in computational neuroscience are encouraged to apply to an NIH-sponsored summer program at the Center for the Neural Basis of Cognition in Pittsburgh. The Center for the Neural Basis of Cognition is a joint interdisciplinary program of Carnegie Mellon University and the University of Pittsburgh. The 2014 program will *tentatively* run from May 27 through August 1, 2014. The final deadline for application is Feb 11. All participants must be United States citizens or permanent residents, must be enrolled at a 4-year accredited institution, and must be in their sophomore or junior year at the time of application. Any undergraduate may apply, but we are especially interested in attracting students with strong quantitative backgrounds with some experience in calculus, statistics and/or computer programming. Experience in neuroscience is not required. Students from groups underrepresented in the sciences are encouraged to apply. The core of the program is the opportunity to carry out an individual mentored research project working closely with a faculty mentor. Other aspects of the scientific program include: 12 faculty lectures on computational neuroscience at the beginning, followed by student presentations and discussion of articles from the scientific literature, presentations on career options and scientific ethics, and a concluding symposium in which students present their research. Application form is available at: http://www.cnbc.cmu.edu/summercompneuro Application can be returned via email or regular mail (see addresses below). In addition to the application, the following items are required for evaluation: * A brief (one page) essay about your interest and experience in neural computation. -
Ben Cipollini +1 619-886-9187 [email protected]
9500 Gilman Dr. MC 0404 La Jolla, CA 92093 Ben Cipollini +1 619-886-9187 [email protected] Research Projects (Advisor: Garrison Cottrell) Developing biologically-informed models of spatial integration in sparse long-range lat- eral connectivity, using rate-coded models, focused on the relationship between the sparseness and spread of connections and the system’s spatial frequency processing properties. Applying models of long-range lateral connections to lateralization in visual processing, using rate-coded models. Focused on explaining data in local/global processing (Sergent, 1982), spatial frequency grating classification (Christman et al., 1991; Kitterle et al., 1992), and face processing (Young and Bion, 1981) from asymmetries in the average distance of connections. Developing biologically-informed models of interhemispheric transfer, focusing on the corpus callosum. This includes rate-coded models with temporal delays (e.g. Ringo et al., 1994) as well as polychronous spiking neural networks (Izhikevich, 2005). Using allometric analyses to examine interhemispheric connectivity across species,using data (electron and light microscopy, MRI) parsed from figures in the literature . Education 2007–2014 Ph. D, specialization in human origins, UC San Diego, La Jolla, CA. Cognitive Science Department 2007–2010 Master’s of Science in Cognitive Science, UC San Diego, La Jolla, CA. Cognitione Science Department 2004–2005 Non-degree study, Yoshida Nihongo Gakuin, Tokyo, Japan. Japanese language study; achieved JLPT level 3 2003–2004 Non-degree study, University of Washington,Seattle,WA. Focus in cognitive psychology 1994–1998 Bachelor of Science, Computer Science, Lehigh University,Bethlehem,PA. Minors in philosophy, astronomy, physics Research Work Experience July 2014–present Post-doctoral Researcher, UC San Diego, La Jolla, CA, PI: Dr. -
2016 Kavli Summer Institute in Cognitive Neuroscience
v. 03/21/16 2016 Kavli Summer Institute in Cognitive Neuroscience Week 1: Brain Circuits in Behavior and Cognition* Course Directors Robert Knight Josef Parvizi Psychology & Neuroscience Neurology & Neurological Sciences University of California, Berkeley Stanford University During this week of the institute, we bring together neuroscientists using cutting-edge approaches including animal and human electrophysiology and neuroimaging. These methods are being used to address fundamental issues in neuroscience including perception, memory and decision-making. The course will emphasize the integration of data across species and the power of combining different approaches to understanding both local and distributed neural processing. Monday (6/20): PHYSIOLOGY FROM PERCEPT TO CONCEPT 8:00-8:30 Breakfast 8:30-8:45 Introductory Remarks – Robert Knight, Josef Parvizi, Barry Giesbrecht, Mike Miller 8:45-10:15 Josef Parvizi, Stanford University, ‘Localization of Functions in the Human Brain: Insights from Intracranial EEG and Electrical Brain Stimulation’ 10:15-10:30 Break 10:30-11:45 Ueli Rutishauer, Cedars Sinai Medical Center, Cal Tech, ‘Probing the Mechanisms of Human Declarative Memory at the Single-Neuron Level’ 11:45-1:45 Lunch 1:45-5:00 Lab Session: – Neuroanatomy – Skirmantas Janusonis (UCSB) LOCATION: Physical Sciences Building North (PSBN), Rms. 2664 and 2666 http://www.aw.id.ucsb.edu/maps/ucsbmap.html (in D5, next to Chemistry). 5:00 Adjourn Tuesday (6/21): BRAIN CIRCUITS AND CODES 8:00-8:45 Breakfast 8:45-10:15 Mingzhou Ding, University of Florida, ‘Analyzing Brain Networks with Granger Causality’ 10:15-10:30 Break 10:30-11:45 Mark Stokes, Oxford University, ‘Exploring Activity-Silent States in Working Memory’ 11:45-1:45 Lunch 1:45-5:00 Lab Session: – Neuropsychology Videos – Robert Knight and Robert Rafal (Univ. -
Altered Topology of Neural Circuits in Congenital Prosopagnosia
RESEARCH ARTICLE Altered topology of neural circuits in congenital prosopagnosia Gideon Rosenthal1,2*, Michal Tanzer2,3, Erez Simony4,5, Uri Hasson6, Marlene Behrmann7, Galia Avidan1,2,3* 1Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 2The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 3Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 4Faculty of Electrical Engineering, Holon Institute of Technology, Holon, Israel; 5Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; 6Department of Psychology and the Neuroscience Institute, Princeton University, Princeton, United States; 7Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States Abstract Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper- connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover *For correspondence: gidonro@ altered topologies in other neurodevelopmental disorders, as well.